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It is generally believed that special relativistic effects are important only when studying objects

moving at speeds close to that of light. This belief leaves many practicing scientists and engineers

with the impression that an understanding of relativity is not necessary for their day jobs. Our aim

is to show that the ideas and mathematics of the special theory of relativity are used in practical

applications involving objects moving much slower than the speed of light. In particular, we

show how the Doppler shift for sound and light can be calculated from the postulates of relativity.
VC 2014 American Association of Physics Teachers.
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I. INTRODUCTION

The Doppler effect is the phenomenon that there is a dif-
ference between the received frequency fr of a wave and the
emitted frequency fe of the wave when the emitter and/or the
receiver is moving. There are many applications of the
Doppler effect including radar,1 global navigation satellite
systems,2 and medical imaging.3

Traditionally, the Doppler formula is derived by calculat-
ing the wavelength measured by the receiver if either the re-
ceiver or emitter is moving, Fig. 1 shows the wave fronts of
a moving emitter. Given the wavelength k and the phase
speed up, the frequency is calculated from f ¼ up=k (see, for
example, Sec. 15–5 of Ref. 4). An alternate approach is to
use coordinate transformations to change from a frame of
reference (coordinate system) in which the emitter is at rest
to one in which the receiver is at rest, and calculate the corre-
sponding received frequency. This second approach is the
way in which the relativistic Doppler effect for light is calcu-
lated (see, for example, Sec. 10.2 of Ref. 5). Some authors
have shown how to apply the Lorentz transformations to
acoustic signals to obtain the generalized relativistic Doppler
effect.6–9 Our paper builds on their work.

In this paper, we use the first postulate of relativity along
with the Galilean transformations to derive the nonrelativistic
Doppler effect formula. This approach not only gets students
thinking in a relative way but also gets them used to space-
time transformations without being bothered by the counterin-
tuitive properties of the Lorentz transformations. Furthermore,
by using the Galilean relativity approach to derive the Doppler
formula, we can easily show how it is modified by a moving
medium—wind in the case of sound—by transforming to an
observer that is stationary with respect to the medium.

The Doppler effect derived from the Galilean transforma-
tions is inconsistent with the principle that the Doppler effect
for light is the same if the emitter is moving towards the re-
ceiver or the receiver is moving towards the emitter. We show
how the Lorentz transformations resolve this contradiction
and, as a direct consequence, predict angular aberration. The
resulting formula is equally applicable to both light and sound.

II. THE FIRST POSTULATE OF SPECIAL

RELATIVITY AND ITS APPLICATION TO WAVES

The first postulate of special relativity is:10 “The laws of
physics are the same to all inertial observers.” An inertial

observer is one for whom Newton’s first law holds: “If there
is no net force on an object then it will not accelerate.”

Consider the two observers O and O0, with O0 moving at a
constant velocity v with respect to O, as depicted in Fig. 2.
Each observer sets up a coordinate system to record the times
and locations of events. Relativity theory is about under-
standing how the locations and times of events in one coordi-
nate system are related to those in another. While the two
observers might disagree on when and where an event hap-
pened, they always agree on what happened.

A. Galilean transformations

Prior to the development of the special theory of relativity,
it was assumed that if the O and O0 coordinate axes are
aligned at t0 ¼ t ¼ 0, then the location of an event in O0 is
related to the location in O by

r ¼ r0 þ vt0: (1)

Furthermore, it was assumed that the time that an event
occurred was agreed upon by all observers (assuming that
their clocks are synchronised) so that

t ¼ t0: (2)

Equations (1) and (2) are known as the Galilean trans-
formations and can be expressed as a single matrix
equation

n ¼ KGn0; (3)

where n and n0 are space-time vectors

n � t
r

� �
; n0 � t0

r0

� �
; (4)

and KG is the Galilean transformation matrix

KG �

1 0 0 0

vx 1 0 0

vy 0 1 0

vz 0 0 1

2
664

3
775 ¼ 1 0T

v I3

� �
: (5)

Here 0 is a 3� 1 vector of zeros and I3 is the 3� 3 identity
matrix.
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B. The first postulate and phase invariance

The magnitude of a monotone plane wave at a point r at
time t is

Aðr; tÞ ¼ A0 cos uðr; tÞ½ � ¼ A0 cosðkTr � 2pftÞ; (6)

where the constants A0, k, and f are the amplitude, wave vec-
tor, and frequency.11

One of the first things that students of relativity need to
get used to doing is writing equations in terms of space-time
vectors. For example, Eq. (6) can be written as

Aðr; tÞ ¼ A0 cos ðjTnÞ; (7)

where j is the wave four-vector

j � �2pf
k

� �
; (8)

and n is the space-time vector given in Eq. (4).
The Galilean transformations, Eq. (3), tell us how to com-

pare the space-time coordinates (n and n0) of events in two
inertial frames. But how does the wave four-vector j trans-
form? To use relativity theory we need to understand which
quantities depend on the relative velocity between two
observers and which do not. For example, as we are about to
show, while the space-time coordinates n of points on a
wave and the wave four-vector j depend on the velocity of
an observer, the phase u ¼ jTn of the wave does not.

Consider the events depicted in Fig. 3:
Event 1: The Mth wave front passes through the person.
Event 2: The (M þ N)th wave front passes through the

person.
According to O, the time between these two events is Dt

and, as the person hasn’t moved, they occur at the same
place; therefore, Dr¼ 0 so that DnT ¼ ½Dt; 0; 0; 0�. On the
other hand, according to O0 the person has moved
Dr0 ¼ �vDt, but the time between the two events is still Dt
so that Dn0T ¼ ½Dt;�vTDt�.

Although the two observers do not agree on where the sec-
ond event occurred, they agree on what occurred—N wave
fronts passed through the person. The number of wave fronts
counted by an observer is simply the total phase shift meas-
ured between events 1 and 2 divided by 2p:

N ¼ Du
2p
¼ kTDn

2p
¼ Du

2p
¼ k0TDn0

2p
) jTn ¼ j0

T
n0: (9)

By applying the Galilean transformations [Eqs. (3)–(5)] to
the principle of phase invariance Eq. (9) one finds that the
transformation equation for the wave four-vector is

j0 ¼ KT
Gj: (10)

The first row of Eq. (10) tells us how the frequency measured
by O0 can be determined from the wave parameters f and k
measured in the O frame:

Fig. 3. The number of wave fronts (dashed lines) as determined by (top)

an inertial frame O in which both the receiver and the emitter are at rest,

and (bottom) an inertial frame O0 in which the receiver is moving with

a velocity –v.

Fig. 1. The moving car is emitting sounds that are received by a person on

the side of the road. Depending on where the person is standing, the fre-

quency may be increased or decreased.

Fig. 2. An event in two space-time coordinate systems. The primed coordi-

nated system is moving with a velocity v with respect to the unprimed

system.
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f 0 ¼ f � v
Tk

2p
¼ f � kTv

2p
: (11)

The second through fourth rows of Eq. (10) establish that the
wave vector k is the same to both observers:

k0 ¼ k: (12)

C. Why don’t the relativistic and standard approaches to
calculating the Doppler effect agree?

The invariance of k � 2pk̂=k derived in the previous sec-
tion predicts that all inertial observers agree on both the
wavelength and direction of the wave. This invariance of k
leads to two apparent contradictions between the standard
undergraduate textbook approach to the Doppler effect (such
as can be found in Ref. 4 for example) and the derivation
given here. The apparent contradictions are:

1. The standard approach predicts that the wavelength meas-
ured by the receiver differs from the emitted wavelength
if the emitter is moving.

2. The aberration effect predicts that the direction of a wave
depends on the relative motion between the emitter and
the receiver.

1. The apparent wavelength contradiction

In many undergraduate physics textbooks the Doppler
effect for a moving emitter is calculated by determining the
shortening or lengthening of wavelengths due to the motion
of the emitter.4,12 In the simple case of an emitter moving
directly towards a stationary receiver, as depicted in Fig. 4,
the received wavelength is

kr ¼ k� ve

fe
; (13)

where kr is the wavelength as determined by the receiver, fe
is the frequency of the signal as determined by the emitter, ve

is the speed of the emitter, and k is the “normal” value of the
wavelength (the one everyone would agree on if there was
no relative motion).

The difference between the normal wavelength k and the
received wavelength kr appears to be in direct contradiction
with Eq. (12), which implies that both the emitter and the re-
ceiver record the same wavelength. This apparent contradic-
tion is resolved when one realizes that k in Eq. (13) is not the

wavelength in the rest frame of the emitter but rather the dis-
tance traveled by the wave-front in one wave period Te¼ 1/fe
as measured in the receiver’s rest frame; i.e., k¼ up/fe, where
up is the phase speed of the wave as measured by the receiver
(in the rest frame of the medium).

In the rest frame of the emitter, the phase speed of the
wave ue

p is reduced by the speed of the emitter: ue
p ¼ up � ve.

The wavelength in the emitter’s rest frame can then be calcu-
lated as

ke ¼
ue

p

fe
¼ up � ve

fe
¼ k� ve

fe
; (14)

and from Eq. (13) we see that ke¼ kr so that the emitter and
the receiver do indeed measure the same wavelength.

2. The apparent aberration contradiction

As we will show in Sec. II D, the direction of the phase ve-
locity up is the same as the direction of the wave vector k
and hence from Eq. (12) is the same in all inertial frames. On
the other hand, both the speed and direction of the group ve-
locity ug depend on the velocities of the receiver, emitter,
and medium (for waves that travel in a medium). Aberration
is a property of the group velocity, not the phase velocity,
and hence there is no contradiction between the aberration
effect and Eq. (12). A derivation of non-relativistic aberra-
tion is given in appendix A.

D. Galilean transformations of the wave and group
velocities

The group velocity and phase velocity transform differ-
ently under Galilean transformations. The group velocity of
a wave is13,14

ug ¼ 2p
@f

@kT ; (15)

and from the Doppler effect formulas (11) and (12), we can
determine how the group velocity changes between inertial
observers:

u0g ¼ 2p
@f 0

@k0T
¼ 2p

@f

@kT
� @kTv

@kT
) u0g ¼ ug � v: (16)

From this, we can conclude that the measured values of both
the magnitude and direction of the group velocity depend on
the velocity of the observer.

The phase velocity up is defined as the rate of change of r
in the direction of k that keeps the phase constant, i.e.,
Aðr þ upDt; tþ DtÞ ¼ Aðr; tÞ. For a plane wave given by Eq.
(6), we have that

kTupDt� 2pf Dt ¼ 0) kTup � 2pf ¼ 0: (17)

As k is parallel to the phase velocity up, it follows from Eq.
(17) that

k ¼ 2pf

u2
p

up: (18)

The phase velocity equation (kTup ¼ 2pf ) along with the
transformation laws for f and k [Eqs. (11) and (12)] can be

Fig. 4. The apparent difference between the received and emitted wave-

length due to the motion of the emitter.
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used to determine the transformation law for the phase
velocity

k0
T
u0p ¼ 2pf 0;

kTu0p ¼ 2p f � v
Tk

2p

� �
from Eq: ð11Þ

¼ 2pf 1� v
Tup

u2
p

 !
from Eq: ð18Þ

¼ kTup 1� v
Tup

u2
p

 !
from Eq: ð17Þ

) u0p ¼ up 1� v
Tup

u2
p

 !
: (19)

From this, we conclude that while the magnitude of the
measured phase velocity depends on the velocity of the ob-
server, the direction does not.

III. THE DOPPLER EFFECT FORMULA

Using Eq. (18), we can express the Doppler formula (11)
in terms of the phase velocity:

f 0 ¼ f 1� v
Tup

u2
p

 !
: (20)

A. The Doppler effect for waves traveling in a medium

For waves (such as sound waves) that travel in a medium,
the preferred frame of reference is the rest frame of the me-
dium. In this frame the phase velocity is known and it is
identical to the group velocity for (monotone) plane waves.
The phase velocity in the rest frame of the emitter is deter-
mined by Eq. (19) to be

ue ¼ up 1� v
T
e up

u2
p

 !
; (21)

where up is the phase velocity of the wave in the rest frame
of the medium.

The received frequency is calculated using Eq. (20):

fr ¼ fe 1� ðv
T
r � vT

e Þue

u2
e

 !
¼ fe

u2
p � vT

r up

u2
p � vT

e up

 !
: (22a)

It is more common to see the Doppler effect equation in trig-
onometric form

fr ¼
1� ðvr=upÞcos hr

1� ðve=upÞcos he
fe; (22b)

where hr and he are the angles between the phase velocity
vector and the receiver’s and emitter’s velocity vectors,
respectively (see Fig. 5). Notice that if hr<p=2 the receiver

Fig. 5. A receiver moving with a velocity vr receives a signal from an emit-

ter moving with a velocity ve.

Fig. 6. Contour plots of the ratio of received to emitted frequencies fr/fe for

the Doppler effect in the rest frame of the emitter for: (a) moving receiver

and stationary emitter, and (b) moving emitter and stationary receiver. The

solid horizontal line is the speed of sound in air u.
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is moving away from the emitter but if he < p=2 the emitter
is moving towards the receiver.

Figure 6 shows the contour plots for the Doppler shift
over a range of speeds and angles. The white region in Fig.
6(a) indicates that the receiver is moving away from the
emitter faster than the wave and hence there is no received
signal. The white region in Fig. 6(b) indicates that the emit-
ter is moving towards the receiver faster than the phase
speed. Notice that as the emitter approaches the speed of
sound a wall of sound is generated that has an infinite fre-
quency; this is known as a sonic boom.

B. Wind and the Doppler effect

One of the advantages of the relativistic approach to deriv-
ing the Doppler effect is that it makes it easier to generalize
to the case when the medium itself is moving, such as for
sound waves traveling in wind. To calculate the Doppler
effect in this case, one puts oneself in the frame that is at rest
with respect to the medium (which for sound waves in air is
a frame of reference that is co-moving with the wind).

In the rest frame of the medium the emitter has a velocity
ve � vm, where vm is the velocity of the medium. From
Eq. (20), we have

fe ¼ fm 1� ðv
T
e � vT

mÞup

u2
p

" #
; (23)

where fm is the frequency in the rest frame of the medium.
Similarly, the received frequency fr can be determined in
terms of the rest frame of the medium:

fr ¼ fm 1� ðv
T
r � vT

mÞup

u2
p

" #
: (24)

Eliminating fm from Eqs. (23) and (24), we find that

fr ¼ fe
u2

p � vT
r up þ vT

mup

u2
p � vT

e up þ vT
mup

 !
(25a)

¼ fe
1� ðvr=uÞ cos hr þ ðvm=uÞcos hm

1� ðve=uÞ cos he þ ðvm=uÞcos hm

� �
; (25b)

where vm is the speed of the wind and hm is the angle
between the wind vector and the phase velocity vector.

If the speeds of the emitter, transmitter, and wind are
much less than the phase speed of the wave then the Taylor
expansion of Eq. (25) gives

fr � fe 1�
vr � veð ÞTup

u2
p

" #
; (26)

which means that to first order the wind doesn’t alter the
magnitude or direction of the Doppler effect.

Comparing Figs. 6(a) and 7, we see that if the wind speed
is comparable to the speed of sound then the wind can have a
significant effect on the received frequency.

IV. THE PROBLEM OF LIGHT

Unlike sound, light doesn’t travel in a medium, and there-
fore there is no way of telling whether the receiver or the
emitter is moving; all that is known is that there is a relative
velocity between the two. The equivalence between a re-
ceiver moving toward a light source and a light source mov-
ing toward a receiver is inconsistent with the Doppler
formula (22), which gives a different result depending on
whether the emitter or the receiver is moving.

One of the great insights to come from relativity theory
was the realization that the Galilean transformations are
wrong. The correct way to translate the space-time measure-
ments of events between inertial frames is with the Lorentz
transformations.

A. Lorentz transformations

The Lorentz transformations can be found in many text-
books (see, for example, Ref. 16, [p. 29] or Ref. 15, [p. 280])
and in Cartesian coordinates they are

t ¼ ct0 þ cvTr0=c2 (27a)

r ¼ cvt0 þ I3 þ
c� 1

v2
vvT

� �
r0: (27b)

These equations can be written in linear algebra form as

n � KLn
0; (28)

where nT ¼ ½t; x; y; z� and n0T ¼ ½t0; x0; y0; z0� are the space-
time coordinates, and KL is the Lorentz transformation
matrix

KL ¼

c cvx=c2 cvy=c2 cvz=c2

cvx 1þ ðv
xÞ2ðc� 1Þ

v2
vxvy ðc� 1Þ

v2
vxvz ðc� 1Þ

v2

cvy vxvy ðc� 1Þ
v2

1þ ðv
yÞ2ðc� 1Þ

v2
vyvz ðc� 1Þ

v2

cvz vxvz ðc� 1Þ
v2

vyvz ðc� 1Þ
v2

1þ ðv
zÞ2ðc� 1Þ

v2

2
6666666664

3
7777777775

(29a)

¼
c cvT=c2

cv I3 þ
c� 1

v2
vvT

2
4

3
5: (29b)
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As usual, c is the Lorentz factor

c � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2=c2

p (30)

and v ¼
ffiffiffiffiffiffiffiffi
vTv
p

is the speed of O0 relative to O. Notice that in
the limit v=c! 0 the Lorentz factor c ! 1 and the Lorentz
transformations Eq. (29) are the same as the Galilean trans-
formations Eq. (5).

Applying the Lorentz transformations to the principle of
phase invariance (j0Tn0 ¼ jTn), we find that

f 0 ¼ c 1� v
Tup

u2
p

 !
f : (31)

As shown in Appendix B, the Doppler effect derived using
the Lorentz transformations gives

fr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

e=c2
p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

r=c2
p u2

p � vT
r up

� �
u2

p � vT
e up

	 
 fe (32a)

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

e=c2
p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

r=c2
p 1� ðvr=upÞcos hr

� �
1� ðve=uÞcos he½ � fe: (32b)

The special-relativistic Doppler formula given by Eq. (32) is
applicable to all situations. The Doppler effect for a moving
emitter is shown in Fig. 8. Equation (32) is equally valid for
light and sound, although for sound, vr; ve, and up are veloc-
ities relative to the rest frame of the medium. In the case that
the emitter and receiver velocities are much less than the
speed of light (v/c! 0) the Lorentz transformations reduce to
the Galilean ones and the generalized Doppler shift formula
Eq. (32) returns the non-relativistic result given by Eq. (22).

As discussed in Ref. 5 (p. 204), for light the phase speed is
up¼ c and the frequency in the rest frame of the emitter
(defined by ve ¼ 0) is known, so that Eq. (32) becomes

fr ¼
1� ðvr=cÞcos hrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2
r=c2

p fe: (33)

Equivalently, as discussed in Ref. 10 (p. 143), in the rest
frame of the receiver (vr ¼ 0) the emitter is moving with a
velocity ve and from Eq. (32) the measured frequency is

fr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

e=c2
p

1� ðve=cÞcos he
fe: (34)

B. Relativistic aberration

From the first postulate of special relativity, it is impossi-
ble for a receiver in a vacuum to determine if the receiver is
moving towards the emitter or vice versa. A direct conse-
quence of this is that the Doppler shift for a receiver moving
with a velocity vr toward a stationary emitter must be the
same as for an emitter moving with a velocity ve ¼ �vr to-
ward a stationary receiver. This requirement is equivalent to
the requirement that Eqs. (33) and (34) are the same if vr¼ ve

and hr ¼ he þ p; however, this is not the case!
This apparent contradiction is resolved when one realizes

that the angle between vectors is not preserved under the

Lorentz transformations described by Eq. (27b). Substituting
vr¼ ve and equating Eq. (33) with Eq. (34), we find that

cos hr ¼
ðve=cÞ � cos he

1� ðve=cÞcos he
: (35)

This effect is the well known relativistic aberration effect
and it is normally derived directly from the Lorentz transfor-
mations (see Ref. 10, p. 133). However, as we have just
shown, it is a direct consequence of applying the first postu-
late of relativity to the Doppler effect for light.

V. CONCLUSION

The first postulate of relativity essentially states that the
laws of physics don’t depend on the velocity of the observer.
We have shown how to use this principle to derive the
Doppler effect formula. Our approach can help

Fig. 7. Contour plot of fr/fe for the Doppler effect with wind for a moving re-

ceiver and stationary emitter. The speed of the wind is half the speed of

sound and its direction is 458 to the phase velocity.

Fig. 8. Contour plot of fr/fe for the relativistic Doppler effect for a fast mov-

ing light source.
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undergraduate students understand the principles and appli-
cations of special and Galilean relativity theory before being
exposed to the more counter-intuitive results of special rela-
tivity, such as time dilation and length contraction.

By considering Galilean transformations we have shown
how to derive the Doppler effect in the presence of wind
[Eq. (25)], which is not commonly done in undergraduate
textbooks. In so doing we demonstrated that if the wind
speed is much less than the wave speed then the wind has no
effect, while if the wind speed is comparable to the wave
speed then it has a significant effect on the received fre-
quency, as seen by Fig. 7.

The Doppler effect derived using the Galilean transforma-
tions predicts different frequency shifts depending on
whether the emitter or the receiver is moving. This result is
inconsistent with the observation that, for light in a vacuum,
only the relative velocity between the emitter and receiver is
important. We showed that the requirement that the Doppler
effect for light in a vacuum depends only on the relative ve-
locity between the emitter and the receiver is resolved by
using the Lorentz transformations instead of the Galilean
ones. As a direct consequence, the well known relativistic
aberration effect was also derived Eq. (35).

It is our hope that courses in special relativity will be
structured to introduce relativity theory through the Doppler
effect in the way that is outlined in this paper.
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APPENDIX A: NON-RELATIVISTIC ABERRATION

OF WAVES DUE THE MOTION OF THE RECEIVER

Angular aberration is the effect that the angle of arrival
depends on the relative velocity between the emitter and the
receiver. This effect is well known and was one of the first
ways in which the speed of light was measured.17

The invariance of the wave vector k under Galilean trans-
formations would seem to suggest that the angle of arrival of
a plane wave is independent of the velocity of the receiver or
emitter, in contradiction with aberration theory. As discussed
in Ref. 18, the angle of arrival of a plane wave is determined

by its group velocity, not its phase velocity. It is apparent
from Eq. (16) that angular aberration occurs when either the
receiver or the emitter is moving, even though the wave vec-
tor k is unchanged.

To calculate the aberration effect, consider the angle
between the x-axis and the group velocity ug for two observ-
ers: O, who measures the group velocity as ug, and O0, who
measures the group velocity as u0g and is moving with a ve-
locity v in the s-direction with respect to O, i.e.,

v ¼ vx̂; (A1)

as shown in Fig. 9. In this scenario for observer O the angle
between the group velocity and the x-axis is

cos h ¼
uT

g x̂

ug
: (A2)

Similarly, according to O0 this angle is

cos h0 ¼
u0Tg x̂0

u0g
: (A3)

We can determine the relationship between h and h0 by not-
ing that, by construction, the O and O0 axes are aligned, so
that x̂0 ¼ x̂. Furthermore, in Sec. II D, we showed that if O
measures the group velocity as ug, then according to O0 it is
u0g ¼ ug � v, and hence

cos h0 ¼
u0Tg x̂

u0g
¼

uT
g x̂ � v

u0g
¼ ug cos h� v

u0g
: (A4)

If the group speed is much greater than v, then v=ug � 1 and
to first order in v/ug we have

u0g � ug �
uT

gv

ug
¼ ug � v cos h; (A5)

from which we conclude that

cos h0 � ug cos h� v

ug � v cos h
� cos hþ v

ug
cos2h� v

ug

¼ cos h� v

ug
sin2 h: (A6)

Finally we note that if the aberration angle is small so that
h0 ¼ hþ Dh, then

Dh � v

ug
sin h: (A7)

In the case of light ug¼ c and this aberration is known as
stellar aberration or Bradley aberration, as it was used to
determine the speed of light by Bradley.17

APPENDIX B: THE DOPPLER EFFECT FROM THE

LORENTZ TRANSFORMATIONS

In the rest frame of the medium, the receiver is moving
with a velocity vr, so from Eq. (31) we get

fr ¼ fm 1� v
T
r u

u2
p

 !
cr; (B1)

Fig. 9. Aberration of the group velocity due to motion of the receiver. The

observer O0 is moving with a velocity v with respect to O.
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where cr ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

r=c2
p

. Similarly, in the rest frame of the
medium the emitter is moving with a velocity ve, and the rel-
ativistic Doppler effect is

fe ¼ fm 1� v
T
e u

u2
p

 !
ce; (B2)

where ce ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

e=c2
p

. Eliminating fm from these equa-
tions we obtain Eq. (32):

fr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

e=c2
p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

r=c2
p u2

p � vT
r u

� �
u2

p � vT
e u

	 
 fe: (B3)
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