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ABSTRACT 
The post-Newtonian equations of the Brans-Dicke scalar-tensor theory are derived, for the case of 

n gravitating ppint masses. They are a set of coupled second-order differentia] equations for the accelera- 
tions of the point masses, which prove to be derivable from a classical velocity-dependent Lagrangian. 

Chandrasekhar (1965) and Nutku (1969) have derived post-Newtonian equations of 
hydrodynamics in the scalar-tensor theory of Brans and Dicke (1961). Nutku obtains 
the metric coefficients in this approximation, the equations of motion for a nonviscous 
perfect fluid, the conservation of proper mass, and the integrals of linear momentum, 
angular momentum, and energy. This has made possible a quick derivation of the equa- 
tions of motion of n gravitating point masses, as well as the discovery of an exact classical 
Lagrangian, for this case. It is expected that these equations will be useful in analysis 
of data from ultraprecise radar tracking of space probes and planets. 

In the Newtonian approximation, the metric in the Brans-Dicke theory is, in iso- 
tropic coordinates, 

2U 
goo = 1 -£- + 0(c 4) , 

O 

gOa = 0(C~3) , (1) 

go, = Sat- — 00,, + 0(C-4) , 

where U is the Newtonian potential, oris the coupling constant of the scalar field (o> co 
is the case of Einsteinian general relativity), and a^b = 1, 2, 3. These expressions suffice 
for discussion of the propagation of light in the solar system. 

.The post-Newtonian terms in this slow-motion expansion of the metric are obtained 
with the metric field equations and the wave equation for the scalar field j they are 
necessary for discussion of relativistic terms in the motion of planets and in space naviga- 
tion. We specialize Nutku?s results to the #-body case by recognizing that his conserved 
mass density p*, which is equal to p[l + {v2/2â) + Uc~2{3 + 3a>)/(2 + ^)], where v 
is the fluid speed, is, from equation (1),^ the (relative) density of proper mass. (We ignore 
his, and Chandrasekhar’s [1965], distinction between total internal energy density € 
and material energy density pc2.) We rewrite his expressions for the metric coefficients 
m terms of volume integrals of p*, and then renormalize the proper mass density to 
include the gravitating pressure stresses ; i.e., we replace in his integrals [p* + 3ÿc~2(l + 
w)/(2 + o>)]dV by just dm, and then write a finite sum over discrete masses (cf. 
the notes of H. P. Robertson [Robertson and Noonan 1968]). Our model of a planet is 
thus a spherically symmetric, isentropic, stationary, self-gravitating mass of perfect 
fluid. 

* Ti1^.PaP?r Presen^s d16 results of one phase of research carried out at the Jet Propulsion Labora- tory^ California Institute of Technology, under contract NAS 7-100, sponsored by the National Aero- 
nautics and Space Administration. 
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The resulting post-Newtonian »-body metric is 

goo — 1 + 
2U , 2Z72 4 + 3o) 1 ¡XjV,' I 2 ßj ^ ¡Xk 

2 + w r; ^ ^ 
+ 

i a*x 
rj fjk d dP 

. 1 6 -f* 4w ßj dr,- 
g°a = +7Ï 2 + 00 ¿r'TjUt (2) 

gab = -(l + 
2 + 2co 1 
O I boh * 

In equation (2) r locates the field point at which is given; ry locates the jth particle, 
with gravitating mass Mi ^ Go^i, Go being the Newtonian constant of gravitation. 
However, the scalar = | ry r|, and = |ry - r¿|. The vector components of 
drj/di are understood in the expression for go«* U — as before. The quantity 
—'Ejßjrj is denoted the superpotential by Chandrasekhar (1965) ; in equation (2) the point 
coordinates of the field are to be held fixed in forming the second partial pf We have also 
found it convenient to perform a gauge transformation on the metric of Nutku. The 
metric (2) satisfies a radiation coordinate condition (Robertson and Noonan 1968). 

The equations of motion follow in standard fashion; each of the particles is self- 
consistently and successively treated as a test particle moving on a geodesic of a non- 
singular metric obtained from equation (2) by suppressing its own direct contributions 
to the summations. Furthermore, in the differentiations involved, care must be taken 
to regard the potentials and accelerations of the other masses as given. 

The result is, for the ¿th particle, 

d2n _ Tj) j. __ 1 6 + 4-0) y* Pi 1 ßk 
Iß ~ p'i n? Í c* 2 +a m ru c2 rjk 

11+0) 9 . 13 + 2co 2 23 + 2co drj drj 
+ 2^Tw V< + 'd 2 + o' Vi â 2 + w dt‘ dt 

- Jd ih(ri ~ u)'iri/dtl\ + h(r/ “ 
(3) 

- 4 Z ri (^ - r,) y~2 fir~74. y . .3 6 3^% * %i ( 

4 + 3(u dr± _ 6 + 4m dr¡\ /drj 

2 w dt 2 -f- M dt ) V dt 

_ du\ 
dt) 

+ 
1 10 + 7w /CO y-v ßj 

0) j+i fij 
ßj <izi 

dt2 ’ 2c2 2 + 

where v? = |ár,/¿/|2. In the last terms, we may substitute the Newtonian value 

dhj/dt2 = Z 
k^j rikz 

For the case of one body orbiting a massive second one (mass M), these equations give 
an advance of perihelion {6M2G^/h2c2) (4 + 3co)/(6 + 3o>) tt radians per revolution, as 
already known (Brans and Dicke 1961). 

It is remarkable, although not unsuspected becausp of the elegant integral theorems 
of Nutku, that equation (3) is derivable from a classical Lagrangian. We find 
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(4) 

y' y> y> ßjßkßi 

3 k7*3' 15*3 jltfj I 

Here^njk — (ry — n)/r^ This reduces immediately to the result given in Landau and 
Lifshitz (1962). It is interesting that the resulting conserved mass and linear momentum 
are independent of a*. 

I am indebted to Dr. Nutku for letting me see his calculations, and for an advance 
copy of his paper. 
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