Test of Time Dilation by Laser Spectroscopy on Fast lons

Sergei Karpuk, Christian Novotny, Gerhard Huber

Guido Saathoff, Sascha Reinhardt, Dirk Schwalm, Gerald Gwinner*

now at University of Manitoba, Canada

A Test Theory of Special Relativity Robertson (1949), Mansouri & Sexl (1977)

1

Assumptions:

- preferred ("ether") system $\Sigma(T, \vec{X})$
- speed of light c_0 isotropic in Σ
- lab. system $S(t, \vec{x})$ moving at velocity $\vec{w}c_0$ w.r.t. Σ (along X)
- assume linear transformation

Generalized Lorentz Transformation:

$$T = \frac{1}{a} \left(t + \frac{wx}{c_0} \right)$$
$$X = \frac{x}{b} + \frac{wc_0}{a} \left(t + \frac{wx}{c_0} \right)$$
$$Y = \frac{y}{d}, \quad Z = \frac{z}{d}$$
$$SR: a = 1/b = \sqrt{1 - w^2}, d = 1$$

Low-velocity limit:

$$\begin{aligned} a(w^2) &= (1 - w^2)^{1/2} \left(1 + \delta \hat{\alpha} \cdot w^2 + \ldots \right) \\ b(w^2) &= (1 - w^2)^{-1/2} \left(1 + \delta \hat{\beta} \cdot w^2 + \ldots \right) \\ d(w^2) &= (1 + \delta \cdot w^2 + \ldots) \end{aligned}$$

Longitudinal Length Contraction Transverse Length Contraction

$$\gamma_{\sf MS}pprox (1-w)^{-1/2-\delta \widehat{lpha}}$$

Time Dilation

Three Parameters – Three experiments

Speed of light $c(\theta, w^2)$ in the moving frame S within the Mansouri-SexI theory ($\theta = \triangleleft(c, w)$):

$$\frac{c(\theta,w)}{c_0} = 1 + (\delta\hat{\beta} - \hat{\delta})w^2 \sin^2(\theta) + (\delta\hat{\alpha} - \delta\hat{\beta})w^2$$

•Michelson-Morley (1887) experiments \rightarrow **Isotropy of c**:

[P.Antonini et al., PRA (2005)] $|\delta \hat{\beta} - \hat{\delta}| \le 3.1 \cdot 10^{-10}$

•Kennedy-Thorndike (1932) experiments \rightarrow Velocity-independence of c: [P.Wolf et al., Gen. Rel. and Grav. (2004)] $\left|\delta\hat{\alpha} - \delta\hat{\beta}\right| \leq 3.0 \cdot 10^{-7}$

•lves-Stilwell (1938) experiments → Time dilation:

[G.Saathoff et al., PRL (2003)] $|\delta \hat{\alpha}| \le 2.2 \cdot 10^{-7}$

This Talk

Time Dilation in the Mansouri-Sexl Framework

Generalized time dilation for a clock moving at a velocity $\vec{w'}$ w.r.t. the ether

$$\gamma_{MS} = a^{-1} = \gamma_{SR} (1 + \delta \hat{\alpha} \cdot w'^2 + ...)$$
gen. Lorentz Trafo
not valid
$$\vec{w}' \approx \vec{w} + \vec{\beta}$$

$$\vec{w} = 350 \text{ km/s if } \Sigma = \text{Cosmic}$$
microwave background
rest-frame
$$\gamma_{MS} = \gamma_{SR} (1 + \delta \hat{\alpha} \cdot (\beta^2 + 2\vec{\beta} \cdot \vec{w}) + ...)$$

Experimental Situation

Typically two types of measurements:

- slow particles and high accuracy: use $\vec{\beta}\vec{w}$ term looking for sidereal variations
- spectroscopy with fast particles is sensitive to β^2 term

Experiment	limit on $\delta \hat{lpha}$
Ives and Stilwell (1938)	1x10 ⁻²
relativistic H ⁻ beam (1986)	1.9x10 ⁻⁴
Mößbauer rotor (1963)	1x10 ⁻⁵
Gravity Probe A (1980)	2.1x10 ⁻⁶
Two-photon transition in neon (1988)	1.4x10 ⁻⁶
Two-photon transition in neon (1993)	2.3x10 ⁻⁶
TSR Lambda-spectroscopy (1994)	8x10 ⁻⁷

Measuring Time Dilation via the Optical Doppler Effect

The relativistic Doppler Effect:

$$v = v_0 \frac{1}{\gamma (1 - \beta \cos \theta)} \quad \gamma = \frac{1}{\sqrt{1 - \beta^2}}$$

• Einstein (1907): $\theta = 90^{\circ}$ (transverse Doppler effect)

$$\longrightarrow
u /
u_0 = 1 / \gamma$$

- Advantage: independence of β
- Disadvantage: independence of β
 - sensitivity to misalignment (cos θ ~ linear @ $\pi/2$)

Idea by Ives and Stilwell 1938

measure with and against the particle motion $\theta = 0^{\circ}$ and $\theta = 180^{\circ}$

$$\nu_{p} = \nu_{0}/\gamma(1-\beta)$$

$$\nu_{a} = \nu_{0}/\gamma(1+\beta)$$
B
B
B
B

 $\rightarrow \gamma_{exp}$ and β measured simultaneously

Special Relativity:Mansouri-Sexl Test Theory: $\gamma \longrightarrow \gamma_{SR} = (1 - \beta^2)^{-1/2}$ $\gamma \longrightarrow \gamma_{MS} = \gamma_{SR}(1 + \delta \hat{\alpha} \cdot (\beta^2 + 2 \vec{\beta} \vec{w}) + \ldots).$

$$\Longrightarrow \nu_{\rm p} \nu_{\rm a} = \nu_0^2$$

$$\Rightarrow \nu_{\rm p}\nu_{\rm a} = \nu_0^2 (1 + 2\delta\hat{\alpha}(\beta^2 + 2\vec{\beta}\vec{w}))$$

The original Ives-Stilwell experiment

Moving source: Hydrogen (H) produced in canal ray tube $(\beta=0.0005, (\gamma-1)<1\cdot10^{-5})$ Observer: High resolution grating spectrometer

Modern Ives-Stilwell Experiment

<u>Source</u>: frequency-stabilized lasers ($\Delta v/v < 10^{-9}$) <u>Moving observer</u>: fast ion with narrow resonance ($\Delta v_0/v_0 < 10^{-8}$)

Frequency measurement now limited by Doppler broadening

Doppler-free Saturation Spectroscopy

Metastable ⁷Li⁺: A Suitable Candidate

Doppler Shift of 30 000 GHz

Issues:

- only 10-20% metastables in beam
- decay of metastable fraction: 8-16s in storage ring
- natural linewidth: 4 MHz

The Heidelberg Test Storage Ring (TSR)

⁷Li+-beam:

- ion number: 10⁷
- velocity: v=0.064c (13.3 MeV)
- $\rightarrow \gamma = 1.002$
- diameter: 500 μm
- divergence: 50 μrad

- Circumference: 55 m
- Vacuum: 5x10⁻¹¹ mbar

Experimental Setup

Iodine spectroscopy: saturation spectroscopy

Lasers are sent through AOMs:

- Iodine line can be frequency-shifted with respect to Li-signal
- Lasers can be switched on and off at a high switching frequency

First Lamb Dip Measurements

A closer look:

closest iodine line 66 MHz lower in frequency than Lamb dip
lifetime of metastables about 13 s. Exp. decrease of fluorescence

•momentum spread: $\Delta p/p=8x10^{-5}$ \rightarrow Doppler-width: $\Delta v = 2.8$ GHz

•Lamb-dip: $\Delta v \approx 15 \text{ MHz}$

Modified Measurement Scheme

Typical run containing 80 Scans

- AOM frequency adjusted to shift iodine line close to the Lamb dip
- laser scan cycle (200 data points) decoupled from ion injection cycle (46 data points) →ion beam decay largely averages out

Adjustment of the laser-ion beam angle

with new optical method: $\Delta \theta < 70 \mu rad$

Influence of Laser Forces

The Lamb dip frequency is slightly dependent on the laser power

Reason:

laser forces locally change
velocity distribution
→ modified Doppler
background & ac-stark shift

Extrapolation to zero intensity by fitting

$$\delta\nu = \delta\nu_0 + mI^{\kappa}$$

Result:

almost linear dependence (κ=0.93)

 $\delta \nu_0 = 1.55 \pm 0.46$ MHz

Laser Curvature Effects

Lasers generate Gaussian Beams

Phase on optical axis:
$$\phi(r=0,z) = 2\pi\nu_{L} - k_{L}z + \arctan\frac{z}{z_{R}}$$

Frequency from the ions point of view:

plane wave

Guoy Phase

$$\nu = \frac{1}{2\pi} \frac{\mathrm{d}\varphi}{\mathrm{d}t} = \frac{1}{2\pi} \left(\frac{\partial\varphi}{\partial t} + v \cdot \frac{\partial\varphi}{\partial z} \right)$$
$$= \nu_{\mathrm{L}} + \beta\nu_{\mathrm{L}} \left(-1 + \frac{c}{2\pi\nu_{\mathrm{L}}} \frac{z_{\mathrm{R}}}{z^{2} + z_{\mathrm{R}}^{2}} \right)$$

argon laser: $\delta \nu^{wf} = -665 \pm 160 \text{ kHz}$

dye laser: $\delta \nu^{wf} = +179 \pm 70 \text{ kHz}$

Experimental Result

	Frequency (kHz)	1σ uncertainty (kHz)
iodine reference line	512 671 028 023	152
AOM shift (dye laser)	414 000	negl.
Lamb dip offset to ref.	1 550	460
Wavefront corr. (on-axis)	-665	160
laser-laser angle		40
laser-ion angle		10
ion beam divergence		50
rel. frequency calibration		50
total v _a ^{exp}	512 671 442 908	516

Comparison to Prediction from SR

• $\nu_{\rm a}^{\rm exp} = 512\ {\rm 671}\ {\rm 442}\ {\rm 908} \pm 516\ {\rm kHz}$

•
$$\nu_{a}^{SR} = \frac{\nu_{o}^{2}}{\nu_{p}}$$
 $\nu_{p} = \nu_{a3-comp} + \delta \nu_{Ar}^{AOM} + \delta \nu_{Ar}^{wf}$

	Frequency (kHz)	1σ uncertainty (kHz)
iodine reference line	582 490 603 380	162
AOM shift (argon laser)	-400 000	negl.
Wavefront corr.	179	66
⁷ Li ⁺ rest frequency	546 466 918 790	400 (PRA 19, 1994)
total v _a ^{SR}	512 671 443 249	766

$$\delta = \nu_{\rm a}^{\rm exp} - \nu_{\rm a}^{\rm SR} = -332 \pm 924 \text{ kHz}$$

$$\delta \widehat{lpha} < 2.2 imes 10^{-7}$$

[Saathoff et al., PRL 19,190403 (2003)]

Measurement at low ion velocity

- The experiment is limited by the knowledge of the rest frame frequency ν_{0}
- Replace measurement of v_0 by measurement at low ion velocity

An iodine line as reference at 565 nm has been calibrated using a self-referenced frequency comb (collaboration with T. W. Hänsch, R. Holzwarth, T. Udem, M. Zimmermann, MPQ)

New Laser Setup

•Dye laser 1 locked to iodine

•Dye laser 2 tuned via frequency offset lock to dye laser 1

Advantages:

- Laser frequency calibrated at each data point
- Laser frequency can be adjusted reproducibly and in an arbitrary order to each value of the tuning range
- Stochastic scans allow for reduction of long-term effects of the laser forces

Faster Laser Switching

Intensity dependence strongly decreases with increasing switching frequency

Extrapolated frequencies from both measurements agree within the error

\rightarrow Fit uncertainty is in the 100 kHz range

Experimental Results

	Frequency,	[kHz]
	$\beta = 0.03$	$\beta = 0.064$
v _a	530 222 086 393 (145)	512 671 301 659 (145)
ν _p	563 209 456 521 (96)	582 490 363 805 (125)

 $\Delta v/v = 2 \times 10^{-10}$

Calculation of $|\delta \hat{\alpha}|$ and \mathbf{v}_0 $|\delta \hat{\alpha}| \le 8.0 \cdot 10^{-8}$

 $v_0 = 546\ 466\ 918\ 615\ (116)\ \text{kHz}$ $v_0 = 546\ 466\ 918\ 790\ (400)\ \text{kHz}$ (PRA 19, 1994)

Next Steps

In the future:

• measurement at considerably higher ion velocity (β =0.34)

Standard Model Extension:

- our experiment gives an upper limit for one parameter in the photon sector: $\tilde{\kappa}_{tr} < 10^{-5}$ (only quoted limit to date), M.Tobar *et al.* PRD **71**, 025004 (2005)
- an analysis in the fermion sector is currently underway (C. Lane).

Most accurate limit for deviations from time dilation:

 $|\delta \hat{\alpha}| \leq 8.0 \cdot 10^{-8}$

20fold improvement compared to non-storage ring experiments!

v=0.34*c* at GSI \rightarrow push $|\delta \hat{\alpha}|$ into 10⁻⁹ range