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A Test Theory of Special Relativity 
Robertson (1949), Mansouri & Sexl (1977) 



Three Parameters – Three experiments 
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Speed of light c(,w2) in the moving frame S within the Mansouri-Sexl  
theory (=^(c,w)): 

•Michelson-Morley (1887) experiments  → Isotropy of c: 

•Kennedy-Thorndike (1932) experiments → Velocity-independence of c: 

•Ives-Stilwell (1938) experiments → Time dilation: 

[P.Antonini et al., PRA (2005)]  

[P.Wolf et al., Gen. Rel. and Grav. (2004)]  

[G.Saathoff et al., PRL (2003)]  
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Generalized time dilation for a clock moving at a velocity       w.r.t.  
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Experimental Situation 

Experiment  limit on  

Ives and Stilwell (1938) 1x10-2 

relativistic H- beam (1986) 1.9x10-4 

Mößbauer rotor (1963) 1x10-5 

Gravity Probe A (1980) 2.1x10-6 

Two-photon transition in neon (1988) 1.4x10-6 

Two-photon transition in neon (1993) 2.3x10-6 

TSR Lambda-spectroscopy (1994) 8x10-7 

• slow particles and high accuracy: use        term looking  

  for sidereal variations 

• spectroscopy with fast particles is sensitive to       term 

Typically two types of measurements: 

 ˆ



Measuring Time Dilation via the  

Optical Doppler Effect 

• Einstein (1907) :   

The relativistic Doppler Effect: 

(transverse Doppler effect) 

• Advantage: independence of  

• Disadvantage:  • independence of   

• sensitivity to misalignment (cos  ~ linear @ /2) 



Idea by Ives and Stilwell 1938 

measure with and against the particle motion 

B S B 

 

Special Relativity: Mansouri-Sexl Test Theory: 

exp and   measured simultaneously 



The original Ives-Stilwell experiment 

<1¢ 10-2 

Moving source: Hydrogen (H) produced in canal ray tube 

Observer: High resolution grating spectrometer 

Observing the H line of the Balmer series (n=4→n=2) 

 =c in all frames →()=0(1-cos) 

0.0005 , ( -1)<1¢10-5) 



Modern Ives-Stilwell Experiment 

Improvements by: • faster particles → accelerator, ion storage ring 

• higher accuracy → laser spectroscopy 

Frequency measurement now limited by Doppler broadening 

Source: 

Moving observer:  

frequency-stabilized lasers (/ < 10-9) 

fast ion with narrow resonance (0/0 < 10-8) 

0 

photomultiplier 



Doppler-free Saturation Spectroscopy 
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Metastable 7Li+: A Suitable Candidate 

Doppler Shift of 30 000 GHz 

Issues: 
• only 10-20% metastables in beam 

• decay of metastable fraction: 8-16s    

in storage ring 

• natural linewidth: 4 MHz 

1.002 

514 nm 

fixed-frequency 

argon ion laser 

585 nm 

tunable due laser 

548.5 nm =0.064 

Photomultiplier 

1 
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The Heidelberg Test Storage Ring (TSR) 

7Li+-beam: 

• ion number: 107 

• velocity: v=0.064c (13.3 MeV) 
• →  = 1.002 

• diameter: 500 m 

• divergence: 50 rad  

• Circumference: 55 m  

• Vacuum: 5x10-11 mbar  



Experimental Setup 

Iodine spectroscopy: 

saturation spectroscopy 

Lasers are sent through  

AOMs: 

• Iodine line can be  

frequency-shifted with  

respect to Li-signal 

• Lasers can be switched  

on and off at a high 

switching frequency 

data from TSR 

laser intensity 
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First Lamb Dip Measurements 

•momentum spread: p/p=8x10-5         
→ Doppler-width:  = 2.8 GHz 

 

•Lamb-dip:  ≈ 15 MHz 

A closer look: 

• closest iodine line 66 MHz lower in 

frequency than Lamb dip 

• lifetime of metastables about 13 s. 

Exp. decrease of fluorescence 



Modified Measurement Scheme 

• AOM frequency adjusted to shift  

  iodine line close to the Lamb dip 

 

• laser scan cycle (200 data points)  

  decoupled from ion injection cycle  

  (46 data points)  
  →ion beam decay largely averages out 

Typical run containing 80 Scans 

(a+b): lasers are applied separately 
           →Doppler background only 

(c): lasers applied simultaneously 
      →Doppler background + Lamb dip 

difference signal contains pure Lamb dip 



Adjustment of the laser-ion beam angle 
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PMT1 

PMT2 

with new optical method:  < 70rad 



Influence of Laser Forces 

Extrapolation to zero intensity 

by fitting 
Result: 

almost linear dependence (k=0.93) 

The Lamb dip frequency is slightly dependent on the laser power 

Reason: 

laser forces locally change  

velocity distribution 
→ modified Doppler  

background & ac-stark shift  



Laser Curvature Effects 

Lasers generate Gaussian Beams 

Phase on optical axis: 

Frequency from the ions point of view: 

argon laser: 

dye laser: 

Guoy Phase plane wave 



Experimental Result 

Frequency (kHz) 1 uncertainty (kHz) 

iodine reference line  512 671 028 023 152 

AOM shift (dye laser) 414 000 negl. 

Lamb dip offset to ref. 1 550 460 

Wavefront corr. (on-axis) -665 160 

laser-laser angle 40 

laser-ion angle 10 

ion beam divergence 50 

rel. frequency calibration 50 

total a
exp 512 671 442 908 516 



Comparison to Prediction from SR 

            Frequency (kHz)      1 uncertainty (kHz) 

iodine reference line 582 490 603 380 162 

AOM shift (argon laser) -400 000 negl. 

Wavefront corr. 179 66 

7Li+ rest frequency 546 466 918 790                 400 (PRA 19, 1994) 

total a
SR 512 671 443 249 766 

[Saathoff et al., PRL 19,190403 (2003)] 



Measurement at low ion velocity 

• The experiment is limited by the knowledge of the rest  

  frame frequency 0 

• Replace measurement of 0 by measurement at low ion velocity 

p
(l) and a

(l) are in the 150 kHz range                                      

 An iodine line as reference at 565 nm has been calibrated using a  

 self-referenced frequency comb (collaboration with T. W. Hänsch, R. Holzwarth,  

 T. Udem,  M. Zimmermann, MPQ) 

=0.03 

 = 514 nm 

argon ion laser 

 = 585 nm 

due laser 
=0.064 

freq. doubl. Nd:YAG laser due laser 

 = 565 nm  = 532 nm 
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New Laser Setup 

•Dye laser 1 locked to iodine 

•Dye laser 2 tuned via frequency offset lock to dye laser 1 

Advantages: 

• Laser frequency calibrated 

at each data point 

• Laser frequency can be 

adjusted reproducibly and in 

an arbitrary order to each value 

of the tuning range      

• Stochastic scans allow for  

reduction of long-term effects 

of the laser forces  
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Faster Laser Switching 

Intensity dependence strongly 

decreases with increasing 

switching frequency 

→Fit uncertainty is in the 100 kHz  range 

Extrapolated frequencies 

from both measurements 

agree within the error 



Experimental Results 

                          Frequency,   [kHz] 

                 β = 0.03              β = 0.064 

    a
      530 222 086 393 (145)      512 671 301 659 (145) 

    p
      563 209 456 521 (96)      582 490 363 805 (125)  

Δ/ = 2 x10-10 

Calculation of           and 0 

  
 

 

0 = 546 466 918 615 (116) kHz 
 

0 = 546 466 918 790 (400) kHz 

(PRA 19, 1994)  
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Next Steps 

• measurement at considerably higher ion velocity (=0.34)  

In the future: 

Standard Model Extension: 

•  our experiment gives an upper limit for one parameter in the photon sector: 

 ~ 
(only quoted limit to date), M.Tobar et al. PRD 71, 025004 (2005) 

•   an analysis in the fermion sector is currently underway (C. Lane). 



Summary 

Most accurate limit for deviations from time dilation: 

20fold improvement compared to non-storage 

ring experiments! 

Future: 

 v=0.34c at GSI →push        into 10-9 range 
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