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Preface

The work described in this report was performed by the Mission Analysis Divi-
sion of the Jet Propulsion Laboratory.
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Abstract

This report documents the complete mathematical model for the Double-
Precision Orbit Determination Program (DPODP), a third-generation program
which has recently been completed at the Jet Propulsion Laboratory. The DPODP
processes earth-based doppler, range, and angular observables of the spacecraft
to determine values of the parameters that specify the spacecraft trajectory for
lunar and planetary missions. The program was developed from 1964 to 1968; it
was first used operationally for the Mariner VI and VII spacecraft which encoun-
tered Mars in August of 1969.

The DPODP has more accurate mathematical models, a significant increase in
numerical precision, and more flexibility than the second-generation Single-
Precision Orbit Determination Program (SPODP). Doppler and range observables
are computed to accuracies of 10-* m/s and 0.1 m, respectively, exclusive of errors
in the tropospheric, ionospheric, and space plasma corrections.
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Mathematical Formulation of the Double-Precision
Orbit Determination Program (DPODP)

{. Introduction

This technical report documents the mathematical
model for the Double-Precision Orbit Determination Pro-
gram (DPODP), a third-generation program that has re-
cently been completed at the Jet Propulsion Laboratory
(JPL). The DPODP will be used to determine values of the
parameters that specify the spacecraft trajectory for lunar
and planetary missions; it will be used for both real-time
and post-flight reduction of tracking data. The DPODP
differentially corrects a priori estimates of injection param-
eters, physical constants, maneuver parameters, and station
locations to minimize the sum of weighted squares of re-
sidual errors between observed and computed quantities.

The analysis began in 1964, and coding for the IBM
7094 computer was initiated the next year. The program
was completed and fully checked out at the end of 1968;
it was first used operationally for the Mariner VI and VII
spacecraft, which encountered Mars in August, 1969.
Conversion of the program to the Univac 1108 computer
was completed early in 1970.

The DPODP has more accurate mathematical models,
significantly more numerical precision, and more flexibility
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than the second-generation Single-Precision Orbit Deter-
mination Program (SPODP). The basic limitations on the
accuracy of computed observables are the inaccuracies in
the troposphere and ionosphere corrections. Before these
corrections are added, the computed values of the doppler
and range observables have accuracies of 10-° m/s and
0.1 m, respectively. The parameters whose values may be
estimated by the DPODP are:

(1) Injection parameters. Rectangular components of
the spacecraft position and velocity vectors at the
injection epoch.

(2) Reference parameters. Parameters that affect the
relative position and velocity of the sun, planets,
and the moon:

Ay = the number of kilometers per astro-
nomical unit (AU). This parameter
converts the precomputed heliocen-
tric ephemerides of eight planets
and the earth-moon barycenter
from astronomical units to kilom-
eters.



Ry = scaling factor for lunar ephemeris,
km/fictitious earth radius. This fac-
tor converts the precomputed geo-
centric lunar ephemeris from ficti-
tious earth radii to kilometers.

E = osculating orbital elements for the
precomputed ephemeris of a planet,
earth-moon barycenter, or the
moon. The estimated correction AE
is used to differentially correct posi-
tion and velocity obtained from the
precomputed ephemeris.

nE, pr = gravitational constants for the earth
and moon, km?/s?. These param-
eters affect the location of the earth—
moon barycenter.

(3) Gravitational constants. The constant y; is the gravi-
tational constant for body i, such as the sun, a
planet, or the moon. (Note that uz and py are also
listed under reference parameters.)

(4) Harmonic coefficients. The harmonic coeflicients
Ju, Cums Sum, along with the gravitational constant
p, describe the gravitational field of a planet or the
moon.

(5) Parameters affecting the acceleration of the space-
craft due to solar radiation pressure.

(6) Coeflicients of quadratic for small acceleration act-
ing along each spacecraft axis. These quadratics
are used to represent gas leaks and small forces
arising from operation of the attitude control system.

(7) Parameters affecting spacecraft motor burns.

(8) Parameters affecting the transformation from uni-
versal time to ephemeris time.

(9) Coefficients of quadratics which represent the de-
parture of atomic time at each tracking station from
broadcast UTC time.

(10) Station parameters. (1) Radius, (2) latitude, and
(8) longitude or (1) distance from spin axis, (2) height
above equator, and (3) longitude for each tracking
station and a landed spacecraft on a planet or the
moon. For a tracking ship: (1) spherical coordinates
at an epoch, (2 velocity, and (3) azimuth.

(11) Speed of light. An adopted constant which defines
the light-second as the basic length unit; it is not
normally included in the solution vector.

(12) Constant bias for range observables.

(13) Spacecraft transmitter frequency for one-way dop-
pler.

(14) Biases aﬁécting observed angles.

(15) Relativity parameter y. This parameter will be
added to the program. It is equal to (1 + »)/(2 + o)
where w is the coupling constant of the scalar field,
a free parameter of the Brans-Dicke theory of gravi-
tation.

Given the a priori estimate of the parameter vector g,
the program integrates the spacecraft acceleration using
the second-sum numerical integration method to give po-
sition and velocity at any desired time. Using the space-
craft ephemeris along with the precomputed ephemerides
for the other bodies within the solar system, and the pa-
rameter vector q, the program computes values for each
observed quantity (normally doppler, range, or angles)
and forms the observed minus computed (O — C) resid-
uals,

In addition to integrating the acceleration of the space-
craft to obtain the spacecraft ephemeris, the program
integrates the partial derivative of the spacecraft acceler-
ation with respect to (wrt) the parameter vector q using
the second-sum numerical integration procedure to give
the partial derivative of the spacecraft state vector X
(position and velocity components) wrt the parameter
vector q, 0X/0q. Using 9X/dq, the program computes the
partial derivative of each computed observable quantity
z wrt q, 9z/9q. Given the O — C residuals, 9z/0q, and the
weights applied to each residual along with the a priori
parameter vector and its covariance matrix, the program
computes the differential correction Aq to the parameter
vector. Starting with ¢ -+ Aq, the program computes a
new spacecraft ephemeris, residuals, and partial deriva-
tives and obtains a second differential correction Aq. This
process is repeated until convergence is obtained and the
sum of weighted squares of residual errors between ob-
served and computed quantities is minimized.

The DPODP formulation was heavily influenced by the
general theory of relativity. Section I1 gives the equations
from general relativity, which are the basis of the DPODP
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formulation, and also the principal relativistic equations
contained in the formulation. The derivations of three of
these equations are given in Appendixes A, B, and C.

The time transformations used throughout the program
and the formulation for computing the relative position,
velocity, acceleration, and jerk of any two celestial bodies
(sun, moon, or planets) are described in Sections III and
IV, respectively. The equations for the acceleration of the
spacecraft relative to the center of integration (any planet,
the sun, or the moon) are given in Section V.

The first step in the computation of all observable quan-
tities is the light time solution, which is described in
Section VI. The formulation for computing the geocentric
inertial position and velocity of a tracking station is pre-
sented in Section VII. The computation of doppler, range,
and angular observables is described in Sections VIII-X.

A forthcoming change to the formulation will be to
compute doppler observables from differenced range ob-
servables divided by the count time, with partial deriva-
tives of the doppler observables with respect to estimated
parameters obtained from differenced range partial deriv-
atives. The formulation necessary to implement this
change is given in Section XI.

Corrections to the observables due to antenna motion,
the troposphere, and the ionosphere are described in Sec-
tion XII. The variational equations for the spacecraft
trajectory and the partial derivatives of the observables
with respect to the estimated parameters are described
in Sections XIII and XIV.

In the original version of the DPODP, the parameter
estimate was obtained from the normal equations, which
are documented in Section XV. In the latest version of
the program, this formulation has been replaced by the
square root form of the normal equations, which is de-
scribed in Section XVI. The square root formulation is
theoretically equivalent to the normal equations but is
numerically superior. The superior numerical techniques
of the square root formulation were first applied to the
linear least squares problem by R. J. Hanson and C. L.
Lawson® (Ref. 1).

1Jet Propulsion Laboratory, Computation and Analysis Section.
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Bi. Relativistic Terms of DPODP Formulation

The general theory of relativity is basically a geometri-
cal theory. The geometry is embodied in the components
of the symmetrical metric tensor gp,:

8ix Bz 8z 8u
821 822 8oz B2
gs1 832z 8z Bsa
gu B2 Baz Sas

The subscripts 1, 2, 3, and 4 correspond to the space-time
coordinates x%, x2, x3, and x*, which are associated with a
particular space-time frame of reference. Usually the
frame of reference is nonrotating and centered at the
barycenter of the system of masses considered. Then x%, x2,
and a? are position coordinates and x* = ct, where c is the
speed of light and # is coordinate time, a uniform system
of time which exists throughout the frame of reference;
it is synonymous with ephemeris time. The components
of the metric tensor g,, are obtained from a solution of
Einstein’s field equations. The solution depends upon
the distribution of matter and the system of coordinates
selected.

The invariant interval ds between two points with
differences in their space and time coordinates of dx?, dx?,
dx?, and dx* is given by

ds? = gpadxpdxt (2)

where, using the Einstein convention, the repeated indices
p and g are summed over the integers 1 through 4.

In an infinitesimally small region surrounding an ob-
server, the components of the metric tensor are constant
and the expression for the interval ds can be transformed
to the special relativity form

dst = c*ds® — dX2 — dY? — dZ¢ (3)

where - is proper time recorded on the observer’s atomic
clock and X, Y, and Z are components of observed position
referred to the observer’s local frame of reference. Since
the atomic clock is fixed relative to the observer, the inter-
val ds corresponding to an observed interval of proper
time dr is

ds = cdr )



or

ds
c

dr = (5)

Hence Eq. (2) relates an observed interval of proper time
dr to the changes in the space and time coordinates of
the clock.

The space-time coordinates are used to represent the
motion of particles, bodies, and light. The coordinates
have no physical significance and are not observable.
Furthermore, the choice of coordinates is completely arbi-
trary. The solution of the field equations for g,, varies
with the coordinates selected in such a manner that the
value of an observed interval of proper time computed
from Egs. (2) and (5) is independent of the coordinates
selected to represent the motion of the atomic clock.

The field equations have been solved exactly for the
case of a massless particle moving under the influence of
a single spherically symmetric massive body located at
the origin of a nonrotating system of coordinates. The
solution of this 1-body problem was first obtained by
Schwarzschild and is given in Ref. 2, p. 85, Eq. (38.8).
A simple transformation in the radial coordinate gives
the “l-body” solution in isotropic spherical coordinates
(Ref. 2, p. 93, Eq. 43.2):

I 2
(1 2cr >

dst = S cidt?
”
(1 + 2c?r
4
— (1 + 2527) (de® + r*d6* + r* sin? 0d$?)
(6)
where

u = gravitational constant of nonrotating spheri-
cally symmetric massive body located at origin
of nonrotating frame of reference, km?3/s%. The
constant p is equal to the product of the uni-
versal gravitational constant G and the rest
mass m of the body.

¢ = speed of light

7, ¢, 8 = spherical coordinates. The spherical and rec-
tangular coordinates of a particle P are shown
in Fig. 1.

t = coordinate time

Fig. 1. Spherical and rectangular coordinates

Expanding and retaining all terms of order 1/c? gives

2

ds* = (1 ~ 2y -2-"—) cdr
c*r c're

_ <1 + —f—‘}) (d* + 1°de® + rsin® 0de?)  (T)

In isotropic rectangular coordinates,

% | 2
dsz=<1___/i+_f*_>czdt2

cr  cir?
2p
—{1+ e (dx? + dy? + dz?) (8)
where
r=[x®+y* + 22]% 9)

Fock (Ref. 3) and Yilmaz (Ref. 4) differ from Einstein and
obtain metrics that differ from Eq. (6). However, when
expanded, their metrics are identical with Eq. (8) to
order 1/c* The small departures of the components of
the metric tensor in Eq. (8) from the unity values of spe-
cial relativity in Eq. (3) represent the “curvature” of
space-time due to the mass of the central body.

The trajectory of a massless particle in the gravitational
feld of a massive body is a geodesic curve which extre-
mizes the integral of ds between two points:

8 / ds=0 (10)
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In order to obtain the equations of motion with coordinate
time ¥ as independent variable, Eq. (10) is written as

b / Ldi=0 (11)
where the Lagrangian L is given by
ds
L= T (12)

and L? is obtained from the expression for ds® by replac-
ing differentials of the space coordinates by derivatives
of the coordinates with respect to ¢ multiplied by dt. The
Lagrangian L may be obtained by expanding the square
root of L? in powers of 1/¢® Given L, the equations of
motion that extremize the integral (11) are the Euler-
Lagrange equations:

d (oL oL
E(EE)—E—O XY,z (13)

where

%= x>y, 2 (14)

S}

A simpler procedure for obtaining the equations of
motion directly from derivatives of L? is developed as
follows. The Euler~Lagrange equations (Eq. 13) are un-
changed by multiplying both terms by L:

d (oL oL
L—%<'5§)—L—5;=O x> Y,z (15)

Differentiating L (3L /2x) with respect to ¢ gives

JEROE

d (oL
+L—J;(—a—;t—> X->Y,% (18)

where

. d
L=2L (17)

The equations of motion are obtained by substituting the
last term of Eq. (18) into Eq. (15):

d (. oL L\/. oL oL
w(5) - (D)(5)-(c5) =0 =ws

(18)
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The derivatives L (9L/0x) and L (3L /ox) are obtained by
direct differentiation of L?. For the usual situation where
only the 1/¢? terms of the relativistic perturbative accel-
eration are required,

Lo I (19)

where L? has been replaced by its leading term ¢? and LI
is obtained by differentiating a simplified expression for
L? containing terms to 1/¢° only. Computation of the
equations of motion from Egs. (18) and (19) is simpler
than taking the square root of L? and using Eq. (13).

From Egs. (8), (12), (18), and (19), the relativistic per-
turbative acceleration of a massless particle moving in
the gravitational field of one body is given by

¥= 02’:3 [(4{——&2):%@-&)&] (20)

where the dots indicate differentiation with respect to
coordinate time £, The position, velocity, and acceleration

vectors are given by
} -,-{ } e

A1)+

§ = magnitude of ¥

s Re

Na e Ko
N

and

An approximate solution to the field equations for the
case of a massless particle moving in the gravitational
field of n massive bodies was first obtained by J. Droste
in 1916 (Ref. 5). In that same year, W. deSitter ex-
tended the work of Droste to account for the mass of
the body whose motion is desired (Ref. 8). However, he
made a theoretical error in the calculation of one of his
terms, which was corrected by Eddington and Clark in
1938 (Ref. 7). The components of the Droste/deSitter/
Eddington and Clark metric are given by (Ref. 7, Egs. 3.1,
3.2, and 3.6)

Tij

2 .
811 = Loz = Zsz = <1 + P &> (22)

J=i

ge=0(p,q=1,2,3;p+~q) (23)



=8u = C’ T4 (24)
e
_ iz : il
824 = 42 = e 1,'“ (25)
j#i
. = AN A
834 = Zaz = P i (26)
j#i
2 M-
84s ™ 1-—- 'Ez' ;:J;
i
2 i8] 2 3 nis
+?[§ :;%]_c“}:r“
(%) 1]
X
D2
k=zj
1 agfi
P @)

j#i

where the indices j and k refer to the n bodies and k
includes body i whose motion is desired. Also,

= gravitational constant for body j

= Gm;, where G is the universal gravitational
constant and m; is the rest mass of body j.

%Y, %

%, 4,4

%, y, = rectangular components of position, velocity,
and acceleration (£ = dx/dt, etc.) relative to a
nonrotating frame of reference centered at the
barycenter of the system of n bodies. The posi-
tion, velocity, and acceleration vectors are
given by Eq. (21); they and their components
are identified by the subscript i, §, or k.

7;; = coordinate distance between bodies i and §
= [(x — x;)* + (s — y3)* + (s — 2))*]%
& = square of velocity = %% + g + 2°
The second partial derivative of r;; with respect to ¢ in
Eq. (27) is obtained holding r; fixed:
8= (x; — i)« (r; — 13) (28)

orj _ (i —

ot Tij (29)

621’” _ (l'j - Ii) °.lgj + S‘_‘;’ [(1‘, l'«,) l']
ot2 Tij Tij 1'3

(30)

Since terms of order greater than 1/¢? will not be retained
in the expression for the acceleration of body i, the accel-
eration ¥; in Eq. (30) may be evaluated from Newtonian

theory:
f=y BB tn 2 (31)
ik
kxj
The summation over k=4j includes body i. The four

space-time coordinates associated with the n-body metric
are

xl=x;
2=y
x® =z (32)
x*=ct

Hence, from Eq. (2) and Egs. (22-27), the expression for
ds? is

ds® = g, dt* + gy, (dxi + dy? + dz?)
+ 2¢gy, dx; dt + 2¢8,, dy; dt + 2085, dz; dt

(33)
Dividing by d#? gives the expression for L?:
L? = gy + g (23 + 97 + £3)
+ 2Cg14&i + 2Cg24gi + 2Cg34éi (34)

The equations of motion for body i are obtained from
Egs. (18) and (19) with x and % replaced by x; and %;.
However, in carrying out the required differentiations of
Eq. (34), the contribution to the field from the mass
of body i must be held fixed.

Specifically, the Newtonian potential at each perturb-
ing body j in the fifth term of g, (Eq. 27) must be con-
sidered to be a function of time only. The potential at
body j due to body i, uz/r with k set equal to i, must not
be differentiated with respect to x;, y;, and z;.

The last term of g, is evaluated with Eq. (30), which
contains the acceleration of body j given by Eq. (31). The
acceleration of body §, ¥;, must also be considered to be a
function of coordinate time ¢ only. The contribution from
the mass of body i must not be differentiated with respect
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to x;, ¥i, and z;. (I am indebted to two relativists at JPL, Dr. Frank B. Estabrook and Dr. Hugo Wahlquist, for pointing

out these special conditions.)

The details of the derivation of the expression for the acceleration of body i are given in Appendix A. The final expres-
sion for the acceleration of body i relative to the barycenter of the system of n bodies with rectangular components

referred to a nonrotating coordinate system is given by

I SN

e kzj

1 o
+2—05(‘1’i“1‘i)°1‘f$

1
+ =
P

[ — 1) - (4h — 38)] (h — ) +

Jei

where ; is computed from Eq. (31) and the summation
over k=% in Egs. (31) and (35) includes body i. Note that
the first term of Eq. (35) is the Newtonian acceleration of
body i. The effect of the mass of body ¢ on its own accel-
eration is contained in its contribution to the Newtonian
potential at each perturbing body j (term 3) and in its
contribution to the Newtonian acceleration of each body §
(terms 8 and 10).

A method for obtaining the motion of a system of n
heavy bodies directly from the field equations, without
recourse to additional equations such as those of a geo-
desic, was obtained for the first time by Einstein, Infeld,
and Hoffman in 1938 (Ref. 8). The method, referred to as
the EIH approximation method, was subsequently per-
fected from the mathematical viewpoint in Refs. 9 and 10.
The EIH method is illustrated in Ref. 8 by obtaining the
equations of motion for two bodies. The equations for the
motion of a system of n bodies were obtained from a later
(1960) work of Infeld and Plebanski (Ref. 11). According
to Bazanski (Ref. 12), the EIH approximation method is,

L“_‘—;" é 1Sz+—— E .Uw(sw
_L O°ri
w2
) jzi

.i 2 $.\2 4 , .
+(£—) +2<S—j> — Y% g
[ C (43

(}', 1;) * ¥
202 Tij

7 it
2c? Tij

IEX]

(35)

in principle, the only tool in the problem of the motion of
heavy bodies in the general theory of relativity.

After deriving the n-body relativistic equations of mo-
tion, Infeld and Plebanski noticed that these equations
could be put into the form of a Lagrangian L with the
equations of motion following from the Euler-Lagrange

equations:
4 (LY _
dt \o%;

where i refers to the body whose motion is desired. The
Infeld Lagrangian is given in Ref. 11, p. 112, Eq. (3.3.37)
or p. 128, Eq. (4.225). The same Lagrangian may be
found on p. 149 of Ref. 13.

oL

o 0

x> Y, 3

(36)

In the notation used for the de Sitter n-body metric
(except that the index i, as well as § and k, now refers to
the n bodies), the Lagrangian is given by

D3I 3 ST
4c Tij

i FEX !

5 ¢ 1

gt 3 E E

pithi
Tij

1 i (i + py)
4c? %5
i j#i

j#i

MW "
"~ 82 Hittibk ﬂ'ﬂc TixThi TwiTij

i j#i ki, i
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where

£ = position vector with components £ ==x, £ =y, and £ = z. A repeated superscript implies a summation over
fh p y P p p
e values 1, 2, and 3.

Carrying out the partial derivatives in term five gives two terms, one of which combines with term four. Also, the last
term contains three identical subterms; two of them may be deleted and the coefficient of the remaining term multiplied
by three. With these changes, the expression for L becomes

=2 s > m B (5t + &) — i’ﬂh :
2 8¢?
2 :E:um: _ Cv.s l} :2 :mm_ 2 :2 :mm(m"'m)
402 [(l‘, r.’l] [(l'] l'-,] + 2 'rij ‘f%j
i jzi

i Jzi

1 il
2c? Z Z Z Tiif i (38)

i i#i ki1

This equation, expressed in a slightly different form, may be found in Ref. 14, p. 372.

The equations of motion (Eq. 36) involve the partial derivatives of the Lagrangian L with respect to the position
and velocity coordinates of the particular body whose motion is desired. Hence, Eq. (38) will be rewritten with the
index i referring to the particular body (body i) whose motion is desired and the indices j and k referring to the n
other bodies (perturbing bodies). For the single-summation terms of Eq. (38), the transformation consists simply of
removal of the i summation. Since all double-summation terms are unchanged by interchanging the indices ¢ and 4,
they are transformed by removing the i summation and multiplying by two. Terms of the triple summation with the
index i or k referring to the specific body { are transformed to the original triple-summation term multiplied by two
with the i summation removed. Terms with the index j referring to the specific body i are transformed to

1 i g i
2c? Ttk

j#i k#j, i

After transformation, the gravitational constant p; may be deleted from each term. Thus, with { now referring to
the specific body i whose motion is desired, and § and k referring to the other bodies, the Lagrangian L is given by

1 22 I .. 3 7 Bi s
= — et ———— 2y2 —— Y
L g & + 8o (83)% + o0 E ( + §) — 202 P i1

Jj#i

1 i (i + )
[(Ty )e¥][(r; —13) o £;] + E 2 E —_ﬁ,——]_
j#i
1 pipe 1 Witk
CZZ Z ritie 207 ZZ TiiTik (39)

jei kej,i j#t k#j,1

The expression for the acceleration of body i is obtained by applying the Euler-Lagrange equation, Eq. (36), to
Eq. (39) for L. The details are given in Appendix A. The resulting n-body equations of motion, derived from the Infeld
Lagrangian, are identical to Egs. (35) derived from the Droste/de Sitter/Eddington and Clark metric.
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The equations of motion for a massless particle moving
in the field of one massive body may be obtained by sim-
plifying the n-body equations of motion (Eq. 35). With
one perturbing body, its position, velocity, and accelera-
tion are zero. Also, with the mass of body i, whose motion
is desired, set equal to zero, the Newtonian potential at
the perturbing body § is zero. With these simplifications,
the n-body acceleration (Eq. 35) reduces exactly to the
acceleration (Eq. 20) obtained from the 1-body isotropic
metric (Eq. 8). Of course, the components of the n-body
metric tensor (Egs. 22-27) reduce to those of the 1-body
isotropic metric (Eq. 8). Some of the relativity terms of
the DPODP formulation are derived from the 1-body
metric, whereas others are obtained from the n-body
- metric. The 1-body isotropic metric was selected since it
is a special case of the n-body de Sitter metric, or equiva-
lently the n-body Infeld Lagrangian. The choice of co-
ordinates in general relativity is arbitrary, but the same
coordinates must be used in all computations.

The general theory of relativity has been generalized
by C. Brans and R. H. Dicke (Ref. 15). Supposedly, their
theory is more in accord with Mach’s principle than the
general theory of relativity. According to Mach’s prin-
ciple, the inertial forces experienced in an accelerated
laboratory are gravitational, having their origin in the
distant matter of the universe accelerated relative to the
laboratory, Brans and Dicke (Ref. 15) state that “locally
observed inertial reactions depend upon the mass distri-
bution of the universe about the point of observation and
consequently the quantitative aspects of locally observed
physical laws (as expressed in the physical “constants”)
are position dependent.”

The Eo6tvos experiment was recently repeated at Prince-
ton University by Dicke et al. and showed that all bodies
fall with the same acceleration to an accuracy of 1 part
in 10%, Brans and Dicke concluded from this result that
the only physical “constant” of their theory (Ref. 15)
whose value needs to vary with position in the universe
is the universal constant of gravitation G (see Ref. 16,
p. 7-8). In order to obtain this variation, they added a
scalar gravitational field to the tensor field of general
relativity. The gravitational constant G varies with the
strength of the scalar field. However, it can be considered
constant in the small region of the universe known as the
solar system,

In the Brans-Dicke scalar-tensor theory of gravity, the
attraction between two particles of matter is due partly
to the tensor field and partly to the scalar field. The frac-
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tion of the gravitational attraction due to the scalar field
is given by
1
4+ 20

where o is the coupling constant of the scalar field, a free
parameter of their theory. It is shown below that » = 6.
For » = 6, 1/16 of the force of gravity is derived from the
scalar field and 15/16 is due to the tensor field.

Because of the expansion of the universe, the strength
of the scalar field (if it exists) is changing, and G should
decrease by roughly 1-3 parts in 10** per year (Ref. 18,
p- 107). The variation in G is inconsistent with the strong
principle of equivalence, which is one of the postulates of
the general theory of relativity. According to this prin-
ciple, in a freely falling, nonrotating laboratory, the form
of the locally determined laws of physics and the values of
the dimensionless physical constants appearing therein
do not vary with the position of the laboratory in space
and time.

Nutku (Ref. 17) has obtained the post-Newtonian
equations of hydrodynamics for a nonviscous fluid in the
scalar-tensor theory of Brans and Dicke. From these
equations, Estabrook (Ref. 18) has obtained the n-body
metric tensor, the n-body Lagrangian, and the resulting
n-body equations of motion. These equations contain
exactly the same terms as the corresponding equations of
general relativity; however, the coefficients of these terms,
which were constant in general relativity, are functions
of the free parameter », the coupling constant of the scalar
field. The value of » must be positive, and, as the value
of » approaches infinity, the equations of the Brans-Dicke
theory revert to the corresponding equations of general
relativity.

From Ref. 15, the relativistic perihelion rotation rate §
of a planetary orbit is

) = [é i ;3;:) jl X [value from general relativity]

(40)

For Mercury, the predicted value from general relativity
is 208 yrad (43 arc-seconds)/century, which agrees with
the observed value. However, the solar oblateness re-
cently observed by Dicke (Ref. 19) would produce an
advance of Mercury’s perihelion of 16 urad (3.4 arc sec-
onds)/century, leaving only 192 prad (39.6 arc seconds)/
century to be attributed to relativity. The Brans-Dicke
theory will produce this perihelion rotation rate for a value



of » approximately equal to 6. Since the true solar oblate-
ness lies somewhere between zero and approximately the
value observed by Dicke, » = 6 (approximately).

The basic equations of the Brans-Dicke theory are
given below with coefficients expressed as functions of
the parameter y, where

1+t
TT 9% e

(41)

As o increases from zero to infinity, y increases from 1/2 to
unity (its general relativity value).

The DPODP will be modified so that the value of the
parameter y may be estimated. The constant coefficients
of all existing DPODP relativity terms, derived from the
general theory of relativity, will be changed to the func-
tions of y specified in this report. Also, the partial deriva-
tives of the observables with respect to y specified in
Section XIV will be added to the program. This will
enable the value of y to be obtained by fitting the theory
to observation. Given v, the corresponding value of o is
given by (see Eq. 41)

(42)

It will be seen that the relativity terms of the DPODP
formulation which are functions of y vary linearly with .
Also, it will be seen that the only components of the
1-body isotropic metric tensor that are functions of » are
g1 = g2» = Zss. The departure of this coefficient from
unity is proportional to the function (1 + )/(2 + ). This
is the source of the change of variable to y (Eq. 41). The
parameter y was first used at JPL by Anderson (Ref. 20).

From Estabrook (Ref. 18), the components of the n-body
metric tensor (written here as functions of y) are

9 .
811 = 822 = L3 = ”‘(1'1'_0%' E :‘q) (43)
%)

I#

8= 0(p,q=1,2,3;p£q) (44)
242 z : X

gi1a = 8u = pe ? ,U: .] (45)
i

j#i

10

2+2 Z
Zos = 8uz = Y MY (46)

ct r3;
jwi

242 z : %
834 = ez = 14 EI% (47)

ct Tij

izt

12N i}:ﬂz
8es = 1- c? Ti; + 04[ Tij

Jj#i

142y 58
ct Tij

j#i

i e
Tij Tjx
k#j

1 621'5"
- —54_ E 17 atzj (48)

iz

2
T
Jj#i

where 0%r;;/0t is given by Egs. (30) and (31). The coeffi-
cients 2y, 2 + 2y, and 1 + 2y appearing in Eqgs. (43-48)
above appear as (2 + 20)/(2 + o), (6 + 40)/(2 + o), and
(4 + 30)/(2 + o), respectively, in Ref. 18. With y equal to
unity (its general relativity value), the equations above are
identical to Eqgs. (22-27), derived from general relativity.

If the mass of body i is reduced to zero and the number
of perturbing bodies is reduced to one, the n-body metric
tensor reduces to the following diagonal 1-body metric:

2
811 = B22 = Zaz = — (1 + %) (49)
1 2 22
gu=1 c2r + cir? (50)

using the notation listed after Eq. (6). In spherical coordi-
nates, the expression for the interval is

2
ds”z(l— 2p +—2—"—>c2dt2

ctr cir?

cir

—<1+ 2Y“>(dr2+r2dez+r=smzod¢z) (51)

Setting y equal to unity gives the general relativity expres-
sion (Eq. 7).
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Estabrook (Ref. 18) also gives an expression for the n-body Lagrangian L in the Brans-Dicke theory. Changing the
coeflicients to functions of y (using Eq. 42) and also changing the form of his equation slightly gives

1 . 1 . 142 ifki e . 3+4 ki e s
=D R ) b ) ) =) ZZ e
4 i i j2i
ity . . 1 pip; 1 i (pi + py)
~ i E E . [(l'f—l'i)'l'a‘] [ —r)ox] + 5 E z 7:;;1_:1_0? E E “—17%]”“_
i FER] % i#é
1 ki
2c* ZZZ 74573k (52)

i it k#j,i

The corresponding equation from the general theory of relativity is Eq. (38); for y = 1, the two expressions are identical.

Transforming Eq. (52) so that the index i refers to the particular body i whose motion is desired and the indices j and k
refer to the n other bodies gives

. 1
L=ls%+——-—(%)+1+2y ’*’(824_32 3+4Y B ik
2 8c? Tij
j#i
G £ sl ek + 3 - 2+ )
202 - ] K I ? * ,r%]
iz
1 pire 1 ik
c? ZZ Tyt 2C° ZZ T3tk (53)
j#i k#§,4 IEI AR TR

The corresponding equation from general relativity is Eq. (39).

In Appendix A, the n-body equations of motion are derived from the n-body metric tensor (Egs. 43-48) and from the
n-body Lagrangian (Eq. 53). The result (also given in Ref. 18) is

_2 :Mi(ri_ri) 2(1+'Y _ 1 s $i\? S\ _2(1+y).
T = ——_—1‘,3;]- 31 Zr” czzrjk-l‘”y p +(1+) P o T; r,

i#i 124 o
8=y 1 e
22 [ T3 + 5 (X — 1) oY
L 3 + 4 it
g Qe xl [+ 2k — U+ 21 G — i) + 5 = (54)
ij
jzi oy

where ¥; is given by Eq. (31) and the summation over k=4 in Egs. (31) and (54) includes body i. With y = 1, Eq. (54)
is identical to Eq. (35), derived from general relativity. Simplifying Eq. (54) to the case of a massless particle moving in
the field of one massive body gives the following relativistic perturbative acceleration:

"f=0273{[2(1-!—)/)—--ys2:|r+2(l+y)(r°r)r} (55)

For y = 1, this equation is identical to Eq. (20), derived from general relativity.
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The ephemerides of the moon, sun, and planets could
be obtained by a simultaneous numerical integration
using Eq. (54). Using these precomputed n-body ephemer-
ides, the DPODP could generate the spacecraft ephemeris
using Eq. (54) to calculate the point-mass gravitational
accelerations of the spacecraft and the body which is the
center of integration.

However, a number of the relativistic perturbative
acceleration terms (the 1/¢? terms) would be insignificant.
For instance, for the heliocentric ephemeris of a planet
other than the earth, only the perturbative acceleration
of the planet due to the mass of the sun, computed from
Eq. (55), need be considered. Equation (54) is required
only when a planet or moon is nearby; that is, when one
is computing the acceleration of the earth, the moon, or
the spacecraft when it is near the earth and moon or a
planet.

The relativistic perturbative acceleration terms required
are specified in Sections IV and V, which describe the pre-
computed n-body ephemerides and the spacecraft
ephemeris. A more detailed discussion of the required
terms and their effect on the various ephemerides may
be found in Refs. 21 and 22.

A brief summary of the effect of general relativity on
the various ephemerides is as follows. For the orbit of a
planet, the mean distance @ is about 1.5 km less than the
Newtonian value. Periodic variations in position are pro-
portional to the eccentricity and range from about 0.2 km
for Venus and Neptune to about 6 km for Mercury and
Pluto. Periodic variations in velocity are proportional to
the product of the mean motion and the eccentricity.
The largest variation is 4 mm/s for Mercury; the varia-
tions for the remaining planets are less than 0.25 mm/s,
which is the value for Mars.

The primary terms of the periodic variations in position
and velocity have periods equal to the orbital period and
one-third the orbital period. The only significant secular
variation in the orbital elements is the advance of peri-
helion, which amounts to the well known value of 208
urad (43 arc seconds)/century for Mercury.

For the orbit of the moon relative to the earth, the mean
distance is about 8 m less than the Newtonian value (using
the same values for the gravitational constants of the earth
and moon). Maximum values of the periodic variations in

12

position and velocity are less than 10 m and 10~ m/s. The
differential solar relativistic acceleration produces a secu-
lar variation in the moon’s perigee of 10 urad (2 arc sec-
onds)/century.

For the Pioneer V1, Mariner IV, and Mariner V space-
craft, the periodic variations in position and velocity are
in the ranges of 3 to 5 km and 0.7 to 1.1 mm/s. The major
terms of these variations have periods equal to the orbital
period and one-third of the orbital period. For an earth
orbiter with a perigee of 7000 km and an eccentricity of
0.2, the advance of perigee is 39 urad (8 arc seconds)/year.

The ephemerides for the planets, the earth-moon bary-
center, the moon, and the spacecraft give the position
coordinates (and their derivatives with respect to coordi-
nate time) as a function of coordinate time . For a given
proper time 7 at some point on earth, the time transfor-
mation t — 7 is thus required to interpolate the ephem-
erides.

The time transformation may be derived from the ex-
pression for the interval which relates an observed interval
of proper time r to the changes in the space and time
coordinates of the atomic clock. Substituting the com-
ponents of the n-body metric tensor (Egs. 43 to 48) into
Eq. (33) for the interval and retaining terms to order
(1/¢)° gives

ds? = (1 — 2¢> c2de? — (da? + dy? + dz?) (56)

2

where x, y, and z may be interpreted as heliocentric coor-
dinates of the atomic clock, although strictly speaking
they are referred to the barycenter, and ¢ is the New-
tonian potential at the clock given by

¢ —_—Z—’;f (57)

where r; is the coordinate distance from the clock to
body j. Expressing the second term of Eq. (56) as the
square of the heliocentric velocity of the clock § multi-
plied by df* and using Eq. (5) gives

dr _[. _ 26 [(3\*]*"
_Et——[l c? c>] (58)
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Since 1/c* terms are ignored,

& e 1(sy

Equation (59) relates an interval of proper time = (ob-
tained from the observers atomic clock) to the corre-
sponding interval of coordinate time ¢, the Newtonian
potential at the clock, and the heliocentric velocity of
the clock.

Coordinate time ¢ may be considered to be a uniform
system of time that pervades the nonrotating heliocentric
frame of reference. For a fixed atomic clock at infinite
distance from the sun, ¢ =§ =0 and dr = dt. That is,
the atomic clock runs at the rate of a coordinate clock
(a clock yielding coordinate time t). This condition and
the length of the coordinate time second fixes the conver-
sion factor (n cycles/second) used to convert cycles or
ticks from the observer’s atomic clock to seconds of proper
time r. From Eq. (59), the rate of an atomic clock de-
creases as the Newtonian potential at the clock and the
heliocentric velocity of the clock increase.

For a fixed atomic clock on earth, dr < dt, and proper
time 7 falls behind coordinate time ¢. However, by the
simple expedient of choosing a different number of cycles
from the observer’s atomic clock per second of proper
time, the latter can be made to agree on the average with
coordinate time . Equation (59) may be written as

dr ¢ 18 o¢o—¢ 1&—¢
# 1T 3es e e ©
where
¢ = time average of ¢
# = time average of §
Ignoring 1/c* terms, this may be written as
dr _l_ql)——;g_l;'z———é;
F 1 c? 2 ¢
d (1 2 —)
(61)
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Note that dr is obtained as dN cycles from the observer’s
atomic clock divided by the conversion factor n cycles/s.
If the conversion factor is changed to n*, where

ron(1-2-1E)

and proper time is obtained as dN/n* and denoted by
d+*, then Eq. (61) may be written as

d+* ¢—$ 182—%
dtzl_ ¢z 2 ¢t (83)

Thus proper time * obtained from the observer’s atomic
clock using the conversion factor n* cycles/s will, on the
average, agree with coordinate time ¢. Periodic variations
in 7* from t are due to variations in ¢ and §* from their
average values.

Coordinate time ¢ is the independent variable for the
equations of motion and is commonly referred to as
ephemeris time ET. The Al atomic time scale on earth
is based upon oscillations of a cesium atomic clock. The
adopted length of the Al second is feesium = 9,192,631,770
cycles of cesium, which is the current experimentally
determined average length of the ET second.? In the
DPODP, the true average length of the ET second is
represented by feesium + Afcesium Cycles of cesium. The
quantity Afeesium 1S 2 solve-for parameter; its value is
probably no more than two or three cycles. The quantity
Feesium T Afcesium is the length of the +* second and hence

dA]- - fcesium + Afcesium _ 1 + Afcesium

dT* fces ium

fceslum

The quantity dA1/dET is the product of this equation
and Eq. (63), which is given to sufficient accuracy by

dal . ¢—¢ 18-F
dET c? 2 ¢

Afcesium

fcesium

+ (64)

where ¢ is the Newtonian potential at a particular Al
atomic clock and § is the heliocentric velocity of the
atomic clock.

2Interpolation of the lunar ephemeris with an observed longitude of

the moon gives the value of the independent variable, ET. The
value of Afcestum given above was determined by counting cycles
of a cesium atomic clock between two observations of the moon
separated by 10 years and dividing the observed number of cycles
by the “observed” ET interval,
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In Appendix B, equations are generated for the depar-
ture of ¢ and §* from their average values, and Eq. (64)
is integrated to give an expression for ET — Al. The ini-
tial conditions were evaluated by considering the method
by which the Al atomic time scale was set up. The master
Al clock was set equal to UT2? on January 1, 1958,
0* UT2. The Al clocks at other locations are synchro-
nized with the master clock by means of radio signals,
accounting for the propagation delay, or by means of a
traveling clock, or by other methods. Hence, the average
offset between Al time and ET is the same for all Al
clocks. The resulting expression for ET — Al (in units of
seconds) is

ET - Al = AT1958
— (¢ — 250,460,800) Seestum

fcesium

+ 1.658 X 10-¢sin E

+ 0.317679 X 10 usin (UT + A)

+ 5.341 X 10-*? 4 sin (UT + X — M)

+ 1.01 X 1022 gsin (UT + A — 2M)

- 1.3640 X 10-** usin (UT + A -+ 2L)

— 227 X 103 usin (UT + A + 2L + M)
+ 1.672 X 10-¢sin D

+ 138 X 103 ysin (UT +A1— D) (65)

where

AT 145 = ET — UT2 on January 1, 1958,
02 0™ 0® UT2 minus the periodic
terms of Eq. (65) evaluated at this
epoch using u and A of the master
Al clock. The master Al clock was
set equal to UT2 on this date. The
parameter AT, 455 may be estimated
by the DPODP

9,192,631,770 cycles of cesium
atomic clock per second of Al time
(definition). This adopted length of
the Al second is the current

experimentally determined average
length of the ET second

fcesium =

foesium T Afcesium = cycles of cesium atomic clock per
ephemeris second. The parameter

Af cesium May be estimated by the

3The UT2 time scale is described in Section III.
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DPODP; its current nominal value
is zero

t = seconds past January 1, 1950, 0®

252,460,800 = seconds from January 1, 1950, 0®
to January 1, 1958, Ot

M = mean anomaly of heliocentric orbit
of earth-moon barycenter

E = eccentric anomaly of heliocentric
orbit of earth-moon barycenter

L = geometric mean longitude of the
sun, referred to mean equinox and
ecliptic of date

D = ¢ — L = mean elongation of the
moon from the sun, where

€ = mean longitude of the moon,
measured in the ecliptic from the
mean equinox of date to the mean
ascending node of the lunar orbit,
and then along the orbit

u = distance of atomic clock from earth’s
spin axis, km
A == east longitude of atomic clock

UT = universal time, hours past midnight,
converted to radians. Itis
computed from

UT1
= — 66
UT 2’7" [86’400] decimal part ( )

where UT1 = seconds of UT1* time past January 1, 1950,
0°UT1. The angles M, L, and D in radians are given by

M = 6.248291 + 1.99096871 X 10" ¢ (67)
L = 4.888339 + 1.99106383 X 107 ¢ (68)
D = 2.,518410 + 2.462600818 X 10-¢¢ (69)

To a sufficient degree of accuracy, the eccentric anomaly
E is given by

E=M++ esinM (70)

where

= eccentricity of heliocentric orbit of earth-moon
barycenter = 0.01672

4The UT]1 time scale is described in Section III.
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Term 4 of Eq. (65) is the sum of two terms with coeffi-
cients of 0.318549 and —0.000870. The larger term arises
from the daily variation in the heliocentric velocity of the
atomic clock, while the smaller term accounts for the
diurnal variation in potential. The expression for ET — Al
used in the current version of the DPODP consists of the
first three terms of Eq. (65) and the following term de-
rived by J. D. Anderson (Ref. 20):

2.03 X 10~ cos ¢ sin (UT + 1)

where ¢ is the latitude of the atomic clock. Anderson’s
term is the fourth term of Eq. (65) with the coefficient
of 0.318549 mentioned above and r, set equal to 6372
km cos ¢.

Changing Anderson’s diurnal term to the fourth term
of Eq. (65) and addition of the last six terms of Eq. (65)
is required to implement the change to the current version
of the program specified in Section XI, namely, the com-
putation of doppler observables from differenced range
observables divided by the count time. The contribution
to “differenced-range” doppler from a term of ET — Al
is approximately equal to the second time derivative of
the term multiplied by the spacecraft range. All terms
affecting “differenced-range” doppler by more than
2 X 10-"m/s per astronomical unit of distance from the
tracking station to the spacecraft were retained in Eq. (65).
Terms of ET — Al which could be derived from the 1/c*
terms of dr/dt would be at least eight orders of magnitude
smaller than the terms of Eq. (65). Their contribution to
differenced-range doppler would be several orders of
magnitude less than the criterion above. Hence, there is
no requirement for 1/c* terms in the expression for
ET — Al.

In order to compute doppler, range, and angular ob-
servables, the time for light to travel from the transmitting
station on earth to the spacecraft, and from there to the
receiving station on earth, must be computed. Thus, an
equation is required which relates the position coordinates
of two points to the coordinate time ¢ for light to travel
from one of the points to the other. This equation will
be referred to as the light time equation. It will be derived
from Eq. (51), the 1-body expression for the interval in
the Brans-Dicke theory. Thus, the effects of the masses
of the planets and the moon on the propagation time are
neglected.

A massless particle moves on a geodesic curve in the

four-dimensional geometry of space-time, which is deter-
mined by the distribution of matter and the system of
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coordinates selected. This is also true for light with the
additional condition that ds = 0. Thus, light moves along
a null geodesic.

The. equations of a geodesic are the Euler-Lagrange
equations which extremize the integral of ds between two
points. When Eq. (10) is written as Egs. (11) and (12),
the Euler-Lagrange Eq. (13) or (18) gives the second-
order differential equations for the three position coordi-
nates with coordinate time ¢ as independent variable.
However, if proper time s is taken as the independent
variable, equations are obtained for the three position
coordinates and also for coordinate time ¢. The equation
for the fourth coordinate is required in the derivation of
the light time equation. Eq. (10) may be expressed as

3[Lds=0 (11)
where
=2y (79)

From Eq. (51),
(12 2L (Y () R
"Qz_(l_ﬁ_’_c‘rz)cz(ds) (1+ c*r

X [(%)2 + 7 (—Z—g—)z + r*sin® @ (-‘%)2] (73)

The Euler-Lagrange equations for g =1, 6, ¢, or t are

The equation for 6 is

. 2
rdz 2dr dG(l %)-,«(——-d‘t) sinfcosd =0
ds ds ds (75)

If coordinates are chosen so that a particle moves ini-
tially in the plane § = /2, then d/ds = 0 and Eq. (75)
gives the result that d?¢/ds* =0. Thus, in the 1-body
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problem, the motion of particles and of light is planar,
and the equations may be simplified by setting

0 =x/2 (76)

Since £ is explicitly independent of ¢ and ¢, first
integrals of Eq. (74) for ¢ =t and ¢ are given by
0.2/9 (dt/ds) = constant, and 8.2/9 (d¢/ds) = constant.

Differentiating Eq. (73) accordingly with § = x/2 and
making use of the fact that .2 = 1 gives

dt constant

'a:._: 1 &‘; N 2u? (77)
c*r ¢
and
constant

r2<1+ QZ‘M)
cr

Dividing Eq. (77) by Eq. (78) and ignoring 1/c* terms
gives

2(1+y)p

=72 [1 + = :l constant (79)

dg
Setting ds =0 and § = »/2 in Eq. (51) gives
2 27\ , 2yp .
(1 — 2y ;7—) e = (1 + ‘cT) (dr* +r°dg?)
(80)

Substituting dt from Eq. (79) into Eq. (80), setting
dr/d¢$ = 0 when r = R (the minimum value of 7 on the
light path), and ignoring 1/c* terms gives

r[r2 + (—CL,Y)B—r—- <R2+ %R)]

(81)

dp = =

16

Integrating between limits of (7, ) and (R,0) and ignor-
ing 1/c* terms gives

d+ye
$=£{g —sin” [H TTe 4y n]}
r Toid 31

L+y)e
= cos™? [R e 14y P] (82)
r c®R

where the plus sign applies for increasing r and the minus
sign applies for decreasing r. When r approaches o in
Eq. (82), the angle ¢ will approach one of the two asymp-
totic values:

¢ = i[g- +(1——:;—g—)—f”—] (83)

The angle between the incoming and outgoing asymp-
totes is thus

e ®

For general relativity, y = 1 and A¢ = 4u/c*R, which
has a maximum value of 848 urad (1.75 arc seconds)
when R is set equal to the radius of the sun, 695,500 km.
Figure 2 shows the curved path of a photon passing the
sun S. Light is moving in the positive y direction and
the point of closest approach occurs at x = R, y = 0. The
polar coordinates (r, ¢) and rectangular coordinates (x, y)
of two points on the light path are shown along with the
strajght line path (of length r,,) joining these two points.
The y intercept was obtained from Eq. (82) by setting
cos ¢ equal to zero; the x intercept of the asymptotes fol-
lows from the y intercept and the angle of the asymptote.

Given that light moves in a plane along the curved
path (Eq. 82), the light time equation may be derived
by two alternative methods. The first method consists of
substituting d¢ from Eq. (79) into Eq. (80), giving a rela-
tion between dr and dt. Integration gives the light time
equation. The second method is a direct integration of
the differential of coordinate distance divided by the
coordinate speed of light v, along the light path between
two points. For planar motion, the space coordinates of
a photon change by dr and d¢ in coordinate time dt.
Hence, an expression for the square of the coordinate

velocity v, is
_ _C_if_ 2 é_(_é 2
ot = (dt> e (dt> (85)
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Fig. 2. Light path

Dividing Eq. (80) by d¢?, substituting Eq. (85), and ignor-
ing 1/c* terms gives

vczc[l - (_1_1'__7_21{] (86)

c*r

The coordinate speed of light v, decreases slightly as
the photon approaches the sun. The Newtonian light time
between two points is the straight-line coordinate distance
between them, divided by the speed of light c. However,
since v, < c, the actual light time will be longer; the
additional time is of order 1/c2.

The direct effect of the bending of light upon the light
time is the increase in the path length divided by the
nominal velocity ¢. The maximum angle between the
straight line path between two points and the curved
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geodesic path is the bending, 2 (1 + y) u/c*R. If the nom-
inal length of the light path is [, the difference in length
between the curved and straight line paths will satisfy
the inequality

Al< L zz—;-[i(—lil?ﬂ] (87)

2(1+y)p c*R
cos ——=

which is of order 1/c*. Thus, the direct effect of the bend-
ing of light on the light time is an additional term of
order 1/c®.

The indirect effect of the bending of light is to alter
the value of r used in Eq. (86) by a term of order 1/c%.
The coordinate velocity divided by ¢ along the curved
geodesic path will differ from the corresponding value
along the straight line path by a term of order 1/¢*. Thus,
the indirect effect of the bending of light upon the light
time is the same order as the direct effect, namely 1/c®.

Since all terms of order 1/c® and greater are ignored
in the light time equation, it is obtained by integrating
the differential of coordinate distance divided by v, along
the straight line path joining two points.

Both of the above-mentioned derivations of the light
time equation are given in Appendix C. In either case, the
resulting light time equation is

tj'—t1‘,=

% n (1 "‘3)')#1“ (Ti +r; + Tif)

[ 1 + r; — 1y (88)

where light travels from point i at coordinate time (ephem-
eris time) #; to point § at coordinate time #;, and
i = || 25 () — 2§ (@) |
o= |[x§ ()]
1= || x5 (&) |
r§ (£:),75 (¢;) = heliocentric position vectors of point i
at transmission time ¢; (ET) and point j
at reception time £; (ET), respectively,

with rectangular components referred
to a nonrotating frame of reference

u = gravitational constant of sun, km3/s?
This form for the relativistic perturbation of the light

time equation was derived independently and introduced
to the Jet Propulsion Laboratory by Holdridge (Ref. 23).

17



However, it had been derived a year earlier by Tausner
(Ref. 24, Eq. 6-105). For two alternative forms, see
Appendix C.

As discussed in detail in Section IX, the relativistic cor-
rection to the light time becomes as large as 36 km/c
when the spacecraft approaches superior conjunction and
the minimum distance from the light path to the surface
of the sun becomes very small. This effect is seen directly
in range observables and is the only really large effect of
general relativity on earth-based tracking data.

The most accurate observables computed by the
DPODP and observed by the Deep Space Network are
round-trip range and two-way doppler data. The remain-
der of this section will surnmarize briefly the procedure
for computation of these observables from a relativistic
point of view.

The observables are defined as follows, A signal is trans-
mitted from the tracking station at coordinate time ¢,
(proper time ,), received and retransmitted by the space-
craft at coordinate time £,, and received by the tracking
station at coordinate time t; (proper time 7;). The range
observable is the elapsed round-trip proper time 3 — 7.
For purposes of this discussion, two-way doppler may
be considered to be the ratio of the received frequency fz
to the transmitted frequency fr. In actuality, it is the
average value of 1 — (fg/fr) over a period of time called
the count time.

As previously mentioned, the precomputed ephemerides
for the planets, the earth-moon barycenter, and the moon
are obtained, in principle, by a simultaneous numerical
integration using Eq. (54). Given the estimated values of
the spacecraft injection conditions and other parameters,
the spacecraft ephemeris is integrated numerically using
Eq. (54) to compute the point mass gravitational accel-
erations, These ephemerides give the position coordinates
and their derivatives with respect to coordinate time as a
function of coordinate time ¢. Given the ephemerides, the
first step in the computation of each observable quantity
is the solution of the light time problem. Equation (65) is
used to convert the reception time 5 for each observable
to coordinate time (ephemeris time) %5, and the heliocen-
tric position and velocity of the tracking station are com-
puted at this epoch.

Solution of the light time equation (Eq. 88) for the
down leg of the light path gives the spacecraft time ¢,
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and its heliocentric position and velocity at ¢,. Similarly,
solution of the light time equation for the up leg of the
light path gives the transmission time #, and the helio-
centric position and velocity of the tracking station at #.

For the range observable, Eq. (65) is used to convert
the round-trip light time from an accurate value of the
coordinate time interval (¢#; — #;) to the observed proper
time interval =3 — .. The doppler observable is

fo_dn dn_ dn
fT - d1'3 : dn - d'ra (89)

where dn cycles are transmitted in the interval of proper
time dr, and received in the interval dr;. The ratio of
received to transmitted frequency is computed from

(&)

fo _\&). dt, dt,

fT - ﬁ dtg dt3 (90)
dt),

The ratios dt,/dt, and dt,/dt, are obtained by differen-
tiation of the light time equations for the up and down
legs, respectively, of the light path. The dr/dt ratio is
evaluated at t; and #; from Eq. (59).

All observable quantities are functions of intervals of
the observer’s proper coordinates associated with his local
space-time frame of reference. The range and two-way
doppler observables are functions of intervals of proper
time = only, namely r;—r, and dr,/dr, respectively. Thus,
the computation of observables will always involve a
transformation from the space and time coordinates of
the frame of reference in which the motion of bodies
and of light is represented mathematically to the observ-
er’s proper coordinates.

Theoretically, the frame of reference and the coordi-
nates selected are arbitrary. The relativistic terms in the
equations of motion (Eq. 54), the light time equation
(Eq. 88), and the transformation from coordinate time to
proper time (Eq. 65) will vary with the frame of reference
and system of coordinates selected. In general, the nu-
merical values of the various constants, obtained by fit-
ting the theory to observations, will also vary. However,
the numerical values of the computed observables are
independent of the frame of reference and system of
coordinates selected.
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fi. Time Transformations

This section describes the systems of time used in the
DPODP and gives the formulas for transforming between
these time scales.

A, Systems of Time

The DPODP uses the five systems of time discussed
below.

1. Ephemeris time (ET), This is a uniform measure of
time which is synonymous with coordinate time ¢ of the
general theory of relativity. It is the independent variable
for the motion of bodies and of light rays in the bary-
centric space-time frame of reference. The represented
motion is strictly mathematical in the sense that the
three position coordinates and their independent variable
(coordinate time) are not observable. However, the values
of observable quantities computed using these coordi-
nates are invariant with the selection of coordinates. Thus,
the selection is arbitrary. Ephemeris time differs from
the other four time scales of the DPODP since it is an
abstract, unobservable time scale.

2. Atomic time (Al). This is derived from oscillations
of a cesium atomic clock. The value of Al was set equal
to UT2 on January 1, 1958, 0%0=0* UT2. The adopted
length of the Al second is 9,192,631,770 cycles of cesium,
which is the current experimentally determined average
length of the ET second.

3. Universal time (UT) (specifically UTO, UTI, or
UT2). This is the measure of time which is the basis for
all civil time-keeping. Universal time is defined in Ref. 25,
p. 73 (the differences between UTO, UT1, and UT2 will
be described below) as 12 h plus the Greenwich hour
angle of a point on the true equator whose right ascen-
sion measured from the mean equinox of date is:

Ry (UT) = 18538452836 -+ 8,640,184:542 T, + 0:0929T%
(91)

where

Ty = number of Julian centuries of 36,525 days of UT
elapsed since January 0, 1900, 128UT

The Greenwich hour angle of this point is 6, — Ry (UT),
where

0x = Greenwich mean sidereal time, the Greenwich
hour angle of the mean equinox of date
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Hence, UT is a function only of 0y:

8y = UT + Ry (UT) — 122 Q=<g,, UT=24>

(92)

(Note that any integer multiple of 24 h may be added to
the right-hand side, and hence the —12* term could also
be written as --12b.)

Universal time is obtained from meridian transits of
stars, observed in practice with a photographic zenith
tube (PZT). At the instant of meridian transit, the right
ascension of the observing station is equal to that of the
observed star, relative to the true equator and equinox of
date. Subtracting the east longitude of the observing sta-
tion gives the true Greenwich sidereal time 4 at the instant
of observation:

8 = true Greenwich sidereal time, the Greenwich hour
angle of the true equinox of date

Subtracting the nutation in right ascension (Ref. 25, p. 43)
gives Greenwich mean sidereal time 0. Solving Eq. (92)
gives the value of UT at the instant of observation. Each
observing station has a nominal value of longitude used
for computing UT; if this nominal value is used, the re-
sulting UT is labeled UT0. Because the pole wanders,
the latitude and longitude of a fixed point on the earth
are a function of time.’ Using the true longitude of the
observing station at the observation time, the resulting
UT is labeled UTL. There are fairly predictable seasonal
fluctuations in UT1; if the adopted seasonal correction is
added to UTI, the resulting time is labeled UT2.

The DPODP uses only UTL. It takes the value of UT1
supplied by the U.S. Naval Observatory and computes
fx from Eq. (92). Adding the nutation in right ascension
gives 4, which is used to compute the position of a track-
ing station relative to the true equator and equinox of the
date of observation.

4. Broadcast Universal time (UTC). This is Greenwich
civil time, which is an approximation of UT2; UTC is
derived from oscillations of a cesium atomic clock. It is
broadcast from several stations of the National Bureau of
Standards such as WWVL, WWV, and WWVH. The sec-
onds pulses are the length of 9,192,631,770 (1 — S) cycles
of cesium.

3See Subsection VII-B-1.
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The value of the frequency offset S is adopted annu-
ally by international agreement. Since 1964, the value
of S must be a positive or negative integral multiple of
50 X 10 (Ref. 26, p. 308). For the years 1960 to 1969,
the annual values of S were —150, —150, —130, —130,
—150, —150, —300, —300, —300, and —300 X 107,
respectively. At 0® UTC on the first day of any month,
UTC may be advanced or retarded by exactly 0.100 s
(Ref. 26, p. 307). These step adjustments to broadcast
UTC are announced in advance. The frequency offsets
and step adjustments are selected so that broadcast UTC
will deviate from UT2 by no more than a few tenths of a
second.

5. Station time (ST). This is the operational time scale
at each tracking station derived from oscillations of a
rubidium atomic clock. The ST second is ideally equal to
the UTC second. Also, the ST clocks are stepped along
with the step adjustments in UTC. Currently, ST at each
tracking station departs from UTC by less than 100 us
and is known to 10-20 ps. The value of the UTC-ST offset
is determined by using a traveling UTC clock (previously
synchronized with the National Bureau of Standards) or
by transmitting a timing signal (derived from the master
UTC clock of the DSN) from the Deep Space Communi-
cations Complex at Goldstone, Calif., to a particular track-
ing station via moon bounce (accounting for the fairly
well known propagation delay). The traveling clock pro-
vides UTC-ST to 5us or better, while the moon bounce
currently provides an accuracy of about 20 ps.

In the DPODP, time is represented as double-precision
seconds past January 1, 1950, 0, On the IBM 7094 com-
puter, double precision is 54 bits or slightly more than
16 decimal digits; from 1967 to 1984, time is represented to
0.6 X 10" s. If UTC is 600,000,000 s past January 1, 1950,
0° UTC, and ET — UTC = 40 s, then ET is 600,000,040 s
past January 1, 1950, 0* ET.

B. Transformations Between Time Scales

The complete transformation between Al time and ET
is given by Eq. (65). The terms of Eq. (65) are defined
in detail after that equation. The first term, AT 455, is the
constant part of the offset between Al time and ET. The
second term accounts for a possible difference in the aver-
age length of the ET second (9,192,631,770 + Afcesium
cycles of cesium) and the length of the Al second
(9,192,631,770 cycles of cesium). The nominal values of
AT, o5 and Afeesium are 32.15 s and 0, respectively; both
are solve-for parameters.
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The remaining terms of Eq. (85) arise from general
relativity; they represent periodic variations in proper
time on earth (namely the Al, UTC, and ST atomic time
scales) relative to uniform coordinate time # (ephemeris
time ET). These variations in proper time relative to
coordinate time are due to variations in the Newtonian
potential at the atomic clock and in the heliocentric
velocity of the atomic clock (see Eq. 64).

In the computation of the range observables used to
compute differenced-range doppler (see Section XI), the
complete expression for ET — Al (Eq. 65) is required to
accurately transform round-trip ephemeris time from the
light time solution to observed round-trip station time.
However, in the general time transformation subroutine
of the DPODP, only the annual relativity term of ET—A1
has been retained. The expression, giving ET — Al in
seconds, is

Afces ium
9,192,631,770

+ 1.658 X 10 sin E (93)

ET — Al = ATy055 — (t — 252,460,800)

where E is computed from Egs. (67) and (70).

The largest terms of ET — Al neglected in Eq. (93)
are the 2-ps daily term (the fourth term of Eq. 65) and
the 1.7-ps monthly term. Also, there are long period vari-
ations of the same approximate magnitude due to periodic
variations in the heliocentric orbital elements of the earth~
moon barycenter arising from perturbations from the other
planets. Thus, the accuracy of ET — Al computed from
Eq. (93) in the general time transformation subroutine
is about 10 s.

The remaining transformations between the various
time scales are specified by linear or quadratic functions
of time ¢. The coefficients of these polynomials are speci-
fied by time block and the argument £ is seconds past the
start of the time block. Thus

UTC — ST =a + bt + ct? (94)
Al—-UTC=d +et (95)
Al —UTL =f+ gt + ht? (96)

Equations (93-96) are used to transform in either direc-
tion, the right-hand side being evaluated with the known
time. For instance, Eq. (95) is evaluated with UTC when
transforming from a UTC epoch to the corresponding Al
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epoch. Alternatively, it is evaluated with Al time when
transforming from an Al epoch to a UTC epoch.

As previously indicated, observed values of UTC — ST
are available for each tracking statiou. Values of a, b,
and ¢ may be obtained by fitting to these data. The value
of UTC — ST is typically less than 100 us and is known
to 10-20 ps. The coeflicients a, b, and ¢ are solve-for
parameters; however, it is doubtful if the estimated values
of a, b, and ¢ would yield UTC — ST more accurately
than the observed accuracy of 10-20 us.

The U.S. Naval Observatory supplies values of
Al — UTC and Al — UT]I to the nearest 0.1 ms. Curve-
fitting techniques are used to obtain the polynomial co-
efficients d through h by time block, normally of 1 month’s
duration. Real-time reduction of tracking data is accom-
plished by using extrapolated polynomials for the current
month.

The fitted expressions for A1 — UTC are probably accu-
rate to about 2 X 10-° 5. A more accurate expression could
be obtained by fitting to the data published by the Na-
tional Bureau of Standards (to the nearest us) or, better
yet, by computing the expression directly from the known
frequency offsets and step adjustments. The published
data are obtained in this manner.

A small error is incurred in the evaluation of Egs. (93)
to (96) since each may be evaluated with either of the
two time scales which it relates. The largest error occurs
in the evaluation of Eq. (95) or (96) where e and g are
about 0.3 X 107, h is about 10-%%, and ¢ may be as large
as 3 X 10¢ s. Since ¢ varies by about 8 s, depending upon
whether it is evaluated with Al or UT, the resulting
uncertainty in A1 — UTC or Al — UT1 is about 2 to
3 X107 s

The observables are recorded in ST. In order to obtain
the computed values of the observables, the ephemerides
of the spacecraft, planets, and moon which affect the
observables must be interpolated at the ET value of the
epoch of observation, obtained from the ST epoch by
using Egs. (93-95). Since Eq. (93) could be in error
by 10 us and each of Egs. (94) and (95) could be in error
by 20 us, the ET value of the epoch of observation could
be in error by as much as 5 X 10~ s,

The error in the computed value of a range observable
due to an error of 5 X 10-* s in the ET epoch at which it is
evaluated is the spacecraft range rate multiplied by
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5 X 105 s. For a typical range rate of 30 km/s, the error
in computed range is 1.5 m, which is close to the desired
accuracy of 0.1 m. The largest conceivable range rate is
about 1000 km/s, which can occur for the spacecraft on a
hyperbola grazing the solar surface. For this extreme case,
the error in computed range is an acceptable 50 m. Thus,
an accuracy of about 10~ s in the individual time trans-
formations is acceptable for the accurate computation of
range observables.

The maximum error in the computed value of a doppler
observable due to an error of 5 X 10 s in the ET epoch
at which it is evaluated is the acceleration of the space-
craft relative to the tracking station multiplied by
5 X 10-® s. During heliocentric cruise, this acceleration
is less than 0.1 m/s?, and the error in computed doppler
is less than 5 X 10-® m/s. This compares favorably with
the desired accuracy of 10-° m/s.

However, for a grazing encounter with Venus or Jupiter,
or an approach to within 1 solar radius of the sun’s sur-
face, the accelerations are 9 m/s?, 25 m/s?, and 70 m/s?,
respectively. For a 5 X 10% s timing error, the errors in
computed doppler observables are 5 X 104 m/s, 1.3 10-
m/s, and 3.5 X 10-% m/s, respectively. These doppler re-
siduals are one to two orders of magnitude larger than
desired. With good tracking data, doppler residuals are
often obtained with a maximum value of about 10-* m/s.
Thus, during heliocentric cruise, a timing accuracy of
5X 10® s is adequate for the accurate computation of
doppler observables. But, when the spacecraft is near a
planet or the sun, this timing accuracy is only marginally
acceptable.

When the offset from UTC to ST at each tracking sta-
tion is known to significantly better than the current
accuracy of 10-20 us, one of the two previously indicated
methods for increasing the accuracy of the Al — UTC
time transformation should be implemented. The next step
in increasing the accuracy of the time transformations
would be to add the 2-ps daily term and the 1.7-us
monthly term to the expression for ET — Al used in the
general time transformation subroutine. Evaluation of the
daily term would require that each Al and UTC epoch
be associated with a particular tracking station and that
the location of the station be input to the subroutine.
However, there is no point in attempting to obtain time
transformations much more accurate than the microsec-
ond level, because of the unknown long period fluctua-
tions of order 10-¢ s in ET — Al
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The value of Al — UT1 computed from Eq. (96) at any
instant defines the location of the 0° meridian on earth
at that instant. Over a short period of time from this
epoch (a few weeks or months), the angular position of
this meridian computed from Egs. (96) and (92) will de-
part in a random manner from its actual position by an
angle equivalent to an error of 5-8 ms (1 sigma) in UTI.
In addition to this random error in UT1, there may be a
secular error of a few milliseconds per year. The geo-
centric velocity of a tracking station on the equator is
465 m/s. Hence, the random error in UT1 of 5-8 ms (1
sigma) produces fluctuations in the computed right ascen-
sions of tracking stations of 2-4 m (1 sigma).® A secular
error in UT1 of 2 ms per year would cause the estimated
station longitudes to drift by about 1 m per year.® These
errors are large in relation to the current goal of obtain-
ing station locations to an accuracy of 1 m. Currently, the
uncertainties in the estimated tracking station locations
are about 5 m (see Mottinger, Ref. 27).

For further details on the subject of timing, see Trask
and Muller (Ref. 28) and Ref. 29, Sections II-E and II-F.

IV. n-Body Ephemerides

Section IV-A describes the precomputed n-body ephem-
erides for the celestial bodies of the solar system and the
manner in which they were generated. Section IV-B de-
scribes the method by which these ephemerides are dif-
ferentially corrected within the DPODP and gives the
formulation for obtaining corrected position, velocity,
acceleration, and jerk from any ephemeris. Section C gives
the formulas for combining these quantities to obtain the
relative position, velocity, acceleration, and jerk between
any two celestial bodies of the solar system.

Acceleration and jerk are required to compute doppler
observables. Acceleration is also used in the computation
of partial derivatives of the observables with respect to
the estimated parameters.

A. Description of Precomputed n-Body Ephemerides

The DPODP uses the following precomputed posi-
tion and velocity ephemerides for the celestial bodies of
the solar system: (1) heliocentric ephemerides for eight
planets and the earth-moon barycenter and (2) the geo-
centric lunar ephemeris. The lunar ephemeris is obtained
by a numerical integration fit to a corrected version of
the Improved Brown Lunar Theory, as will be described

6The angular error multiplied by the distance of the tracking station
from the earth’s spin axis.
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in detail below. Given the precomputed ephemeris of the
moon, the planetary ephemerides are obtained by a simul-
taneous numerical integration performed by the SSDPS
(Solar System Data Processing System).

Values of a number of parameters are differentially
corrected to produce a least-squares fit to observed angu-
lar data for all of the planets and the sun, radar range
data for Mercury, Venus, and Mars, and ranging data to
a spacecraft when it is in the vicinity of a planet. The
parameters whose values may be estimated are (1) oscu-
lating orbital elements for each ephemeris, (2) osculating
orbital elements for the trajectory of the spacecraft rela-
tive to the planet it is passing, (3) masses of the planets,
(4) radii of planets which have been tracked by radar
ranging, (5) right ascension and declination limb biases
for Mercury and Venus, and (6) the astronomical unit.

The equations of motion are Newton’s equations plus
relativistic perturbative accelerations derived from the
I-body metric of the Brans-Dicke theory. When the
solve-for parameter y approaches unity, this metric re-
duces to the 1-body isotropic metric of general relativity.
Development Ephemeris 69 (DE69), which is the latest
export ephemeris produced at JPL, is the first to be based
upon isotropic relativistic coordinates. Previous ephem-
erides were based upon the Schwarzschild coordinates of
general relativity. This permanent change was made so
that the precomputed n-body ephemerides would be com-
patible with the DPODP, which is based upon isotropic
coordinates.

The ephemeris DEG9 is based upon a 60-year back-
ward integration from the epoch of August 2, 1970, O* ET
to 1910. The observations consist of over 34,000 optical
observations of the planets (except Pluto) and the sun
obtained from the 150-mm and 230-mm transit circles of
the U.S. Naval Observatory for 1910-1968, radar range
data for Mercury, Venus, and Mars for 1964-1968, and
range observables for the Mariner V spacecraft near its
encounter with Venus (data for June 21-November 12,
1967). After being fitted to these data, the ephemerides
were integrated forward from the 1970 epoch to 1976.
The ephemeris DE689 consists of the latter portion of the
60-year integration from October 28, 1961, to the 1970
epoch and the forward integration from this epoch to
January 23, 1976. The lunar ephemeris contained in DEG9
is Lunar Ephemeris 16 (LE186), described below; DE69 is
described in Ref. 30.

An easy way to describe LE186 is to consider the evolu-
tion of LE4 (Ref. 31) through LE6 (Ref. 32) to LEIS
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(Ref. 33). The Improved Lunar Ephemeris (ILE) (Ref. 34)
is the result of removing certain deficiencies in the orig-
inal Brown Lunar Theory (Refs. 35 and 36). Brown’s solu-
tion for the motion of the moon was obtained in rotating
rectangular coordinates and then transformed to spherical
coordinates. Because precise observations were not avail-
able in his time, Brown evaluated this coordinate trans-
formation with less accuracy than he used in his solution
for the moon’s motion.

These coordinate transformations have recently been
recomputed to a higher precision by Eckert, Walker, and
Eckert (Ref. 37). Eckert and Smith (Ref. 38) have ob-
tained a numerical general theory for the motion of the
moon that is independent of the Brown Lunar Theory.
From a comparison of the two theories, Eckert has recom-
mended that the ILE be augmented by the longitude
correction

0”072 sin (2F — 21)

Positions for LE4 were obtained by evaluating the ILE
with aberration terms removed to make the ephemeris
strictly geometric, addition of the transformation correc-
tions of Eckert et al. (Ref. 37) and the longitude correction
of Eckert and Smith (Ref. 38), and addition of corrections
to effectively change the constants of the theory to those
adopted by the International Astronomical Union (IAU)
in 1964 (Ref. 26, pp. 594-5), except for the value of the
second zonal harmonic J, for the earth, Numerical differ-
entiation of these positions gave the velocities for LE4.
Addition to LE4 of correction terms to account for the
modern value of J, gave LES,

Van Flandern has obtained corrections to certain con-
stants of the ILE from a reduction of meridian circle
observations of the moon and a few grazing occultations
in the period 1956-1966 (Refs. 39 and 40). The latter
observations are particularly accurate in declination. The
observations were referred to the moon’s center of mass
by the use of Watts” limb corrections (Ref. 41). These
charts indicate that the geometric center moves relative
to the center of mass with a maximum amplitude of 7.3
prad (1.5 arc seconds) (Ref. 39).

Van Flandern’s corrections to the constants of the ILE
essentially change the equinox from Brown’s equinox
(close to Newcomb’s equinox) to the FK4 equinox, which
is the basis of modern observations and the planetary
ephemerides. Correction terms were added to LE6 to
change certain of the constants in the theory to those
obtained by Van Flandern (Ref. 40). A numerically inte-
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grated lunar ephemeris was obtained by fitting to this
version of the lunar theory. Addition of corrections to
account for certain observable but currently unmodelable
terms of the lunar motion gave LEIS.

In Refs. 21 and 22, it is shown that the significant part
of the relativistic perturbative acceleration for the helio-
centric ephemeris of a planet or the earth-moon bary-
center is the direct perturbative acceleration due to the
sun, the indirect perturbative acceleration of the sun due
to the other bodies of the solar system being negligible.

In the general theory of relativity, the perturbative ac-
celeration of a body i due to the sun is given by Eq. (35)
with the Newtonian term and the j summation removed
and the index § referring to the sun. In Ref. 21, pp. 49-51,
it is shown that all terms containing the sun’s barycentric
velocity, the sun’s acceleration, or the Newtonian poten-
tial at the sun are insignificant and hence that the rela-
tivistic inertial acceleration (relative to the barycenter of
the solar system) of a body due to the sun, denoted ¥(S),
may be computed from

(5) = s [(4p — ¥)r + 4(r-D)1] 7

where

uy = gravitational constant of sun, km?/s?
¢ = speed of light

r,T = heliocentric position and velocity vectors of
body, with rectangular components referred to
the mean earth equator and equinox of 1950.0

7,§ = magnitudes of r and ¥, respectively

¢ = Newtonian potential at body (positive sign con-
vention)

In the Brans-Dicke theory, Egs. (35) and (97) are
replaced by Eq. (54) and the following equation:

F(S) = 5a([2(L+ )¢ — y@Ix + 2(L+ ) (- D)§)
(98)
where y (or o; see Eq. 41) is the free parameter of the
Brans-Dicke theory whose value is to be estimated by
fitting the theory to observation.

As y approaches unity, its general relativity value,
Eq. (98) approaches Eq. (97) of general relativity. If ¢
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in Egs. (97) and (98) were replaced by the potential due
to the sun, ug/r, these equations would be identical to
the corresponding 1-body equations, namely Egs. (20)
and (55), respectively.

For the heliocentric ephemeris of a planet, the rela-
tivistic perturbative acceleration is given by Eq. (98).
However, the only significant term of ¢ is pg/r and thus,
for this application, Eq. (98) reduces to the corresponding
1-body equation, Eq. (55). For the heliocentric ephemeris
of the earth-moon barycenter, the perturbative acceler-
ation is computed from’

Y o
F= 1_i_‘mr,g(S)+ 1_'_#1',,(8) (99)
where
Be
=t 0
b (100)
and

ug, py = gravitational constants of the earth and moon,
respectively, km?3/s?

The perturbative accelerations of the earth and moon
due to the sun are computed from Eq. (98) with the poten-
tials at these two bodies given by

M P
=L, b 1
¢p Ton + rom (101)
_ s M
P Tsm + Tem (102)

where 74; is the coordinate distance from body i to body ;.
The formulas above are used in the SSDPS to compute
the relativistic perturbative acceleration for each plan-
etary ephemeris.

From Ref. 22, Table 3, the maximum amplitude of the
periodic variations in position for a planetary ephemeris,
arising from Eq. (98), is about 6 km. It is shown in Ref. 21,
p. 51, that the ratio of terms of Eq. (54) not included in
Eq. (98) to the acceleration computed from Eq. (98) has
a maximum value of 10-3. Thus the above-mentioned posi-
tion variations are computed to an accuracy of at least

"The notation ¥:(7) is the relativistic perturbative acceleration of
body i due to body j.

24

6 m. The relativistic acceleration of the earth-moon bary-
center computed from Eq. (99) should also contain the
terms

B . 1 .,
1+[.LrE(M)+ 1+‘u.rll(E)

where the mutual accelerations of the earth and moon
are computed from Eq. (54). However, it is shown in
Ref. 21, p. 53, that the periodic variations in the position
of the earth-moon barycenter due to these terms are more
than three orders of magnitude smaller than the rela-
tivistic variations due to the sun, which, from Table 3
of Ref. 22, have a magnitude of about 400 m. Thus, the
variations in position of the earth-moon barycenter due
to the mutual accelerations of the earth and moon have
an amplitude of less than 1 m. The errors in the planetary
ephemerides due to neglecting the contribution to the
Newtonian potential ¢ in Eq. (98) from the other planets
are less than 10 m for the inner planets and 100 m for the
outer planets.

The relativistic acceleration due to a planet or the moon
is significant, relative to the solar relativistic acceleration,
in only a small region swrrounding the body (small in
relation to the scale of the solar system). For simplicity,
this region is taken to be a sphere, termed the relativity
sphere, whose center is at the center of mass of the body.
The relativistic acceleration due to a planet or the moon
should be computed only within that body’s relativity
sphere. The radius of the relativity sphere for each body

of the solar system is given in Ref. 21, Table 5. Since no

planet is within the relativity sphere of another planet,
the relativistic acceleration of a planet or the earth-moon
barycenter due to another planet is negligible. It has been
estimated (Ref. 21, p. 53) that neglecting the indirect
relativistic acceleration of the sun produces periodic errors
in position of less than 1 m for the inner planets and less
than 1 km for the outer planets.

Considering all of the errors mentioned above, the
planetary ephemerides produced by the SSDPS contain
periodic errors of up to 20 m for the inner planets and up
to 1 km for the outer planets due to neglected terms in the
specified formulation for the relativistic perturbative ac-
celeration.

Fragmentary evidence indicates that LE16 may be as
accurate as 100 m. The maximum effect of general rela-
tivity on the geocentric lunar ephemeris is less than 10 m
in position and 10-° m/s in velocity (Ref. 22, p. 4). Thus, it
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is not important which relativity terms were included in
the numerical integration fitted to the lunar theory, which
produced LEIS.

However, in the future when the lunar ephemeris is
obtained by a numerical integration fitted to observations,
as is currently done for the planetary ephemerides and
the spacecraft ephemeris, the relativistic perturbative ac-
celeration of the moon relative to the earth should be
computed from

¥ =¥y (S) — ¥u(S) + ¥u (E) — ¥ (M) (103)
The first two terms are evaluated with Egs. (98), (101),
and (102). The last two terms are evaluated with Eq. (54),
with the Newtonian term and the j summation removed
and the index j referring to the body producing the accel-
eration. All velocities appearing in Eq. (54) are barycentric
but may be evaluated with heliocentric values. The accel-
eration of the perturbing body may be evaluated with
Newtonian theory, Eq. (31). The Newtonian potentials
at bodies i and j may be evaluated with Eqgs. (101) and
(102). The sum of terms 1 and 2 of Eq. (103) is about 10-*
km/s?, whereas the individual terms are one order of
magnitude larger. The magnitudes of terms 3 and 4 are
about 10% and 105 ki /s?, respectively. The total accel-
eration computed from Eq. (103) is accurate to three or
four figures.

B. Obtaining Corrected Position, Velocity, Acceleration,
and Jerk From Each Ephemeris

1. Uncorrected position and velocity. As previously
mentioned, the n-body ephemeris consists of (1) heliocen-
tric ephemerides for eight planets and the earth-moon
barycenter and (2) the geocentric lunar ephemeris. These
ephemerides are in the so-called type-50 format; they
contain modified second and fourth central differences
of position and velocity. Interpolation with the fifth-order
Everett’s formula gives rectangular components of posi-
tion and velocity referred to the mean earth equator and
equinox of 1950.0 (commonly referred to as 1950.0 coordi-
nates). Positions and velocities from the planetary ephem-
erides are expressed in astronomical units AU and
AU /day, respectively, while data from the lunar ephem-
eris are expressed in “fictitious earth radii” and “fictitious
earth radii”/day.

The conversion factors used to convert the length units
to kilometers are Ay km per AU and Ry km per fictitious
earth radius. The scaling factors Az and Ry are related to
other solve-for parameters by the so-called solar and lunar
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constraints, respectively. These constraints and the rec-
ommended values of the scaling factors are given in the
following section.

2. Solar and lunar consiraints. The solar constraint is
an exact relation between the estimated value of

Ag = the number of kilometers per astronomical unit
and the estimated value of
pg = gravitational constant of the sun, km?/s®

The relation is

kA3
By = (_85?3:26%)—2- (104)

where

k = the Gaussian gravitational constant
= 0.01720200895 AU%2/day (exactly)

The gravitational constant of the sun k2 expressed in astro-
nomical units cubed per day squared is a mathematical
constant which defines the length of 1 AU. The solar con-
straint is simply a conversion of the sun’s gravitational
constant from AU3%/day® to km?/s%

From Ref. 29, p. 35, Table 17, the values of ys and Ag
currently adopted by JPL are

s = 1.32712499 X 10" km?/s?
Ag = 149,597,893 km/AU

These values satisfy the solar constraint (Eq. 104) to the
stated accuracy of nine figures. The value of Ay is the rec-

ommended scaling factor for the planetary ephemerides
of DEG9.

One of the constants of the lunar theory is

sin 7 ¢ = the constant of sine parallax for the moon

= the ratio of a fictitious mean equatorial radius
of the earth (the length unit of the lunar
ephemeris) to the perturbed mean distance
of the moon. The constant sinw ¢ is dimen-
sionless; however, it is usually expressed in
seconds of arc by multiplying by the number
of seconds of arc in one radian.
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The value of sin= ¢ adopted by the IAU in 1964 (Ref. 26)
and used in the construction of LE4 and succeeding lunar
ephemerides is 3,422.451 arc seconds. The mean distance
to the moon in terms of fictitious earth radii is given by

1 _ 206,264.80625
sin = ¢ (arc seconds)

(105)

e = sin ¢ (dimensionless)
where
ay = perturbed mean distance of moon (the perturba-
tion is due to the sun), fictitious earth radii
The value of ay in kilometers is
REGM

where

Ry = scaling factor for the lunar ephemeris, km/ficti-
tious earth radius

The value of Rzay is obtained from a modified version
of Kepler's third law:

na3 RS = F2 (ug + ) (106)

where

ny = sidereal mean motion of moon (1900)
= 2.661699489 X 10-¢ rad/s

F, = 0.999093141975298 (as computed by E. W.
Brown in 1897)
= ratio of perturbed mean distance of moon to
2-body mean distance (sun not present and
mean motion remains constant)

um, by = gravitational constants of earth and moon,
respectively, km?3/s2.

Solving for By gives

Rg = C (ps + pa)*/? (107)
where
C =t (108)

For sinw, = 3,422.451 arc seconds, the numerical value
of C is 86.3135017.
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Equation (107) is the so-called lunar constraint. The
value of ay in Eq. (108) is computed from the value of
sinw ¢ used to generate the lunar ephemeris. Either ax
or sin =, may be considered to be a defined constant of
the lunar theory. Hence, the accuracy of C is that of ny,
namely about 10 figures. On the other hand, uy -+ py is
known to only about seven figures. Hence, for all prac-
tical purposes, the lunar constraint, Eq. (107), is an exact
relation which must be satisfied by the estimated values
of KE, B, and RE.

The lunar ephemeris LE16 is based upon values of pz
and u, adopted by the IAU in 1964, namely
ps = 398,603 km?/s?
and
= pg/pa = 81.30
which gives
s = 4,902.87 km?/s?

Substituting these values into Eq. (107) gives
R = 6,378.160 km/fictitious earth radius

which is the value of the mean equatorial radius of the
earth adopted by the IAU in 1964.

However, since 1964, more accurate values of uz and
par have been adopted by JPL (Ref. 29, p. 35, Table 16):
pe = 398,601.2 km?/s?

and
p = 81.3010
which gives
par = 4,902.78 km3/s?

The corresponding value of Rp is
R; = 6,378.1492 km /fictitious earth radius

Strictly speaking, the lunar ephemeris should be corrected
for these more modern values of uz and py as was done
in the generation of LE4 where Brown’s constants were
corrected to those adopted by the IAU in 1964. However,
the major part of this correction can be obtained by scal-
ing the lunar ephemeris with Rz = 6,378.1492 km rather
than the value of 6,378.160 km.
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3. Corrected position and velocity. Each of the precom-
puted ephemerides may be differentially corrected with
conic formulas. Position and velocity are interpolated
from the ephemeris at an epoch of osculation specified
by the user and are converted to orbital elements, spe-
cifically the Brouwer and Clemence Set III (Ref. 42,
pp. 241-242). The elliptical orbit with these elements
agrees exactly with the precomputed ephemeris at the
osculation epoch and approximately at other epochs. The
orbital elements of the precomputed ephemeris at the
osculation epoch are solve-for parameters. Partial deriva-
tives of position and velocity from the ephemeris with
respect to these orbital elements are approximated by
those from the osculating elliptical orbit. These partial
derivatives are used to determine corrections in the oscu-
lating orbital elements and, given these corrections, to
apply a linear differential correction to the ephemeris.

The actual parameters whose values are estimated are
six parameters which represent corrections AE to the oscu-
lating orbital elements E. The corrections are

Aa/a
Ae
AM, + Aw
Ap
Aq
eAw

AE = (109)

where

a = semimajor axis of osculating elliptical
orbit

e = eccentricity

M, = value of mean anomaly at osculation
epoch, %, (ET)

Ap, Aq, Aw = right-handed rotations of the orbit about
the P, Q, and W axes, respectively, where
P is directed from the focus to perifocus,
Q is /2 rad ahead of P in the orbital
plane, and W =P X Q

Let AE, equal the estimated value of AE obtained from
the first iteration of the orbit determination process (see
Section I). The second iteration will produce an addi-
tional correction AE, or a total correction AE, + AE,.
Let the contribution to AE obtained from the ith iteration
be denoted as AE,;. With this notation, the correction
AR (n) used to correct the ephemeris for the nth iteration
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consists of the accumulated correction obtained from the
previous n — 1 iterations:

(Aala)i
(Ae)i
(AMO + AtD)i,
(ap);
(aq9);
(eaw);

n>1

(110)

If the correction process is convergent, AE, will be less
than AE,; and the accumulated correction will approach
a limit.

Given 1950.0 position r (AU) and velocity & (AU/s) ob-
tained from a planetary ephemeris (at any time) in units
of AU and AU/s (the interpolated value in AU/day
divided by 86,400), corrected position and velocity for
the nth iteration, expressed in km and km/s, are com-
puted from

ra(km) = Agr (AU) + SEAE(n) 1> (111

where AE (n) is given by Eq. (110). For the lunar
ephemeris,

1, (km) = Rgr (fictitious earth radii)
or .
+ E AE(n) x>t (112)

In these equations,

o _
oE

or , or , or , or ) or , or
[ a(Aa) 0(ae) 0(AM, + Aw) 9(ap) 9(Aq) a(eAw)]
a

r—> ¥ (113)

where
" ox |
oE;

r—>7r
LI (114)

oE; oE; Xy, 2> %,
02
oE;

S'
o
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where x, y, and z are the rectangular components of r re-
ferred to the mean earth equator and equinox of 1950.0.
The formulation for computing or/dE and o/ is given
in the next section.

4. Partial derivaiives of position and velocity with re-
spect to orbital elements. In order to compute or/9E and
or/oE for any of the precomputed ephemerides, position
and velocity at the osculation epoch must be converted to
orbital elements E. Let

r, = 1950.0 position interpolated from ephemeris at
osculation epoch ¢, (ET) in AU or fictitious earth
radii and converted to km by multiplying by Ag
or RE.

T, = 1950.0 velocity interpolated from ephemeris at
osculation epoch ¢, (ET) in AU/day or fictitious
earth radii/day and converted to km/s by multi-
plying by Ay or Ry and dividing by 86,400.

For the heliocentric ephemeris of a planet, the parameter
4 is computed from ,
r (planet) = ps + pp (115)

For the heliocentric ephemeris of the earth~moon bary-
center, u is given by

p (earth—-moon barycenter) = ug + pz + uy (116)
For the geocentric lunar ephemeris,
p (moon) = g + par (117)

where

s Ma, par, pp = gravitational constants for the sun, the
earth, the moon, and a planet, km?/s?

Given 1, (km), ¥, (km/s), and p, the required orbital ele-
ments are computed as follows:

To = (1'0 ° 1'0)% (118)
The semimajor axis a is given by
1
a 2 Lk (119)
To M
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The mean motion n is computed from

‘u}é
=g (120)
and the following computations are made:
ccosE,=1— 2 (121)
T F
esinE, = (,Za);; (122)
e = [(ecos E,)? + (e sin E,)?]% (123)
cosE, = ~(~e—-995—E—)- (124)
sinE, = 39%’33—)- (125)
The unit vectors P, Q, and W are computed from
E %
p="0 Yo — <£> sin E, 1, (126)
1”0 i
_ ¥ X ¥y
T (127)
Q=WXP (128)

The partial derivatives or/0E and 27/0E are computed
from the orbital elements a, ¢, n, P, Q, and W, which are
computed once, and from the following quantities, which
are computed at each time # that the partials are evaluated:

r, ¥ = 1950.0 position and velocity interpolated from the
ephemeris at time ¢ (ephemeris time) and con-
verted to units of km and km/s as indicated pre-
viously for r, and %,.

r=(r-r)% (129)
1 =r°f (130)
7= {0 (131)
¥F= — -—::;— ¥ (132)
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From Ref. 42, p. 241, the partial derivatives of r at
ephemeris time ¢ with respect to each element of AE used
in Eq. (113), are given by

or 3 .

(Aa) =y - "Q':'(t — o) F (133)
a A

a
O Hir+Kii 134
0(ae) o X (134)

where the quantities H, and K,, which are functions of ¢,
are given by (Ref. 42, p. 237)

_r—a(l+e)
H,= “ae(l—e) (135)
rF r
K, = m[l + m:‘ (136)
or kN
9(aM, + aw)  n (137)
* __p 138
oap) T T (138)
x 139
aaq) T (139)
or 1 iy
3 eaw) ?(W Xr = 'E) (140)

Differentiating Eqs. (133-140) with respect to ephem-
eris time gives the partial derivatives of r at ephemeris
time ¢ with respect to each element of AE:®

oF i1, 3 o
; Aa =-—§-r—-é—(t—-to)r (141)
a
oF
ey = Her T Kk (142)

H2=—5é—df_—ez)-{1——%[1+£:—(l—e2)]} (143)

8The velocity partials were first derived by P. R. Peabody, formerly
of the Jet Propulsion Laboratory.
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1 r

K= rma(t ) aed
oF ¥
3(aM, + Aw)  n (145)
or .
W =PXr (1486)
5 qu) =QXr (147)
or 1

a(eAw)'—_-—e—(WXl"—‘—) (148)

5. Acceleration and jerk. Acceleration and jerk vectors
from each ephemeris are computed from corrected posi-
tion and velocity vectors using 2-body formulas. Given the
corrected position and velocity vectors, denoted here as
r and ¥, compute a corrected value of r from Eq. (129), the
acceleration vector ¥ from Eq. (132), and the jerk vector
¥ from

o Sp(r-d .
= ——#—(:;—r)-r—-%r (149)

where p is given by Eq. (115), (116), or (117).

C. Position, Velocity, Acceleration, and Jerk of One
Celestial Body Relative to Another

Section IV-B gave the formulation for computing the
corrected position, velocity, acceleration, and jerk of a
planet P or the earth-moon barycenter B relative to the
sun S or of the moon M relative to the earth E:

8 r—> 5 YT
The position, velocity, acceleration, and jerk of the moon

relative to the earth-moon barycenter and of the bary-
center relative to the earth are computed from

3 = —1—_—‘;7 8 ro>EET (150)
and

1 o sress ’
k= 1_}_”1'?, r—>L¥¥ (151)

where

UE
=-— 152

i (152)
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Listed below are sums of the above-mentioned position
vectors which give the position vectors of the earth, moon,
sun, and a planet relative to each of the following bodies:

(1) Earth = reference body
g =xf
H=r-x
A

(2) Moon = reference body

g
5
Il
[}
e
e
-
o
8
5
g
2
<

(4) Planet = reference body

g= gt
g= -t
=

g= -t

where P and P’ represent two different planets. All of the
sums above apply when r is replaced by 1, T, or T.

The solve-for parameters which affect the relative posi-
tion and velocity between two celestial bodies are the
scaling factor Ay for the heliocentric ephemerides; the
scaling factor Ry for the lunar ephemeris; corrections to
osculating orbital elements AE for any of the ephem-
erides; and the gravitational constants of the earth and
moon, pr and upy. These are known as reference param-
eters.

V. Spacecrafi Trajectory

A, General Description

The acceleration of the spacecraft relative to the center
of integration consists of:

(1) The Newtonian point mass acceleration relative to
the center of integration.

(2) The perturbative acceleration from general rela-
tivity.
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(3) The direct acceleration of the spacecraft due to the
oblateness of a near planet or the moon.

(4) The indirect acceleration of the center of integra-
tion (if it is the earth or the moon) due to the
oblateness of the earth and the moon.

(5) The acceleration due to solar radiation pressure.

(6) The acceleration due to small forces originating in
the spacecraft, such as from operation of the atti-
tude control system and from gas leaks.

(7) The acceleration due to motor burns.

Section V-B contains the formulation for computation of
each of these terms of the spacecraft acceleration.

The total acceleration is integrated numerically to give
the spacecraft ephemeris, with ephemeris time (ET) as the
independent variable. The acceleration is computed at
each integration step and is used to produce three sum
and difference (s. a. d.) arrays (one for each rectangular
component of position). Each s. a. d. array contains two
sums and ten differences of an acceleration component.
The arrays may be interpolated at any ET epoch to give
the rectangular components of position, velocity, accel-
eration, and jerk of the spacecraft relative to the current
center of integration. The rectangular components are
referred to the mean earth equator and equinox of 1950.0.
The «x axis is directed along the mean equinox of 1950.0,
the z axis is normal to the mean earth equator of 1950.0,
directed north, and the y axis completes the right-handed
system.

The center of integration is located at the center of mass
of the sun, the moon, or one of the nine planets. It may
be specified as one of these bodies, or it may be allowed
to change as the spacecraft passes through the sphere of
influence of a planet (relative to the sun) or of the moon
(relative to the earth). For this case, the center of integra-
tion will be that body within whose sphere of influence
the spacecraft lies. At a change in center of integration,
the position and velocity of the spacecraft relative to the
old center of integration are incremented by the position
and velocity, respectively, of the old center relative to
the new center (computed from the formulation of Sec-
tion IV).

The 1950.0 rectangular components of the spacecraft
position and velocity vectors at the injection epoch are
solve-for parameters and may be referenced to any body
(not necessarily the center of integration). The injection
epoch must be specified in the A1, UTC, or ST time scales
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and transformed to ET. The time transformation and the
ET value of the epoch will vary from iteration to iteration
of the orbit determination process if AT 955 OF Afcesium iS
an estimated parameter. The injection position and veloc-
ity vectors are transformed to values relative to the initial
center of integration (using the formulation of Section IV)
and are used to start the s. a. d. arrays.

A motor burn of short duration or a spring separation
may be represented as an instantaneous change in the
position and velocity vectors of the spacecraft. The esti-
mated parameters are the burn time #, and the rectangu-
lar components of the velocity increment Af. At the epoch
of the motor burn, the velocity is incremented by Af and
the position is incremented by

A——}—'
l'-—2Al'tb

B. Spacecraft Acceleration

The equations for computing each term of the total
spacecraft acceleration relative to the center of integra-
tion are given below.

1. Point-mass gravitational acceleration. The point-
mass gravitational acceleration of the spacecraft (S/C)
relative to the center of integration (C) includes all gravi-
tational accelerations except those arising from the oblate-
ness of the various bodies. The point-mass acceleration
is given by

(153)

¥ = .1'.8/0 — ¥,
where

Yy, Te = inertial gravitational acceleration of space-
craft and center of integration, respectively,
computed by treating each body of the solar
system as a point mass. These inertial accel-
erations are relative to the barycenter of the
solar system and have rectangular compo-
nents referred to the mean earth equator and
equinox of 1950.0.

Each of these accelerations is computed from Eq. (54).
The 1/¢° term is the Newtonian acceleration and the
remaining 1/c¢? terms are relativistic perturbative acceler-
ations derived from the Brans-Dicke theory (these terms
revert to those of general relativity, Eq. (35), when y - 1).
The summation over §4 i includes the sun, the nine plan-
ets, and the moon. For each of these perturbing bodies,
the user has the option of

(1) Computing the Newtonian acceleration and the
relativistic perturbative acceleration.
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(2) Computing the Newtonian acceleration only.
(3) Ignoring the acceleration due to that body.

The acceleration ¥; of each perturbing body in Eq. (54)
is computed from the Newtonian expression, Eq. (31). The
summation over k=~={ in Eqs. (31) and (54) and over l541
in Eq. (54) includes all bodies of the solar system which
are “turned on” (treated as (1) or (2) above and included
in the § summation of Eq. 54). The velocities in Eq. (54)
are heliocentric.

2. Direct acceleration of spacecraft due to oblateness.
The acceleration of the spacecraft relative to the center
of integration due to the oblateness of the bodies of the
solar system consists of the direct acceleration of the
spacecraft minus the indirect acceleration of the center
of integration. Currently, the oblateness for only the earth,
the moon, and Mars is considered. However, the capability
for accounting for the oblateness of the remaining planets
and the sun will be added in the near future. The direct
acceleration of the spacecraft due to the oblateness of a
body is computed only when the spacecraft is within the
so-called harmonic sphere for the body. The radii of the
harmonic spheres may be changed by input; the nominal
values for the earth, Mars, and the moon are 2.5 X 10° km,
1.0 X 106 km, and 2 X 10° km, respectively. The formula-
tion for computing the direct acceleration of the space-
craft due to the oblateness of a body is given in this
section. The indirect acceleration of the center of integra-
tion due to oblateness, computed only when the center of
integration is the earth or the moon, accounts for the
oblateness of each of these two bodies. The formulation is
given in Section V-B-3.

The direct acceleration of the spacecraft due to the
oblateness of a body is derived from the generalized po-
tential function (Ref. 43, pp. 173-174) for that body:

U= %[1 + 22(%”-) Py (sin ¢)

ne1 m=0
X (Cpm cos mA + S, sin m)t):l (154)
where
4 = gravitational constant of body, km?/s?
7, ¢, A = radius, latitude, and longitude (positive

east of prime meridian) of spacecraft
relative to body
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a, = mean equatorial radius of body (an
adopted constant used for U)

P (sin ¢) = associated Legendre function of the first
kind. The argument sin ¢ will be omitted
here.

Cum and S, = numerical coefficients (tesseral harmonic
coefficients). The values may be esti-
mated by the DPODP.

The associated Legendre function P™ is defined by

m

pr = cosm¢mPn (155)
where
P, = Legendre polyhomial of degree n in sin ¢
The zonal harmonic coefficient J, is defined as
Jo=—Ch (156)

Equation (154) may be written as the sum of three terms
corresponding to the potential of a point mass, zonal har-
monics J., and tesseral harmonics C,,, and S, (m=%0):

U=%+U@+U@£) (157)
where
v=-L£ I&ﬁYm (158)
U(C,S) =
%Z Z <a—1f-’-)n P (Cpm cos mA + S, sinm)
- (159)

The inertial acceleration of the spacecraft is computed
in a rectangular coordinate system (x'y’z’) with the x’ axis
directed outward along the instantaneous radius to the
spacecraft, the y” axis directed east, and the 2z’ axis directed
north. Figure 3 shows these axes relative to body-fixed
axes XYsZ, where x; is along the intersection of the prime
meridian and equator of the body, z; is directed north
along the axis of rotation of the body, and y; completes
the right-handed system. The transformation from body-
fixed coordinates ¥, = (x5, 45, 25)7 to ¥ = (x’,y’,%")" co-
ordinates is given by

' =Ry

(160)
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PRIME
MERIDIAN
yl
Yp
X
EQUATORIAL
PLANE
Fig. 3. x/, ¥/, and z’ axes relative to body-fixed
Xb, Yo, aned z; axes
where
€OS ¢ COS A €Os ¢ sin A sin ¢
R= —sin A cos A 0 (161)
—sin ¢ cos A —sin¢ sinA cos ¢

The position vector of the spacecraft relative to the body
(denoted as body ) with rectangular components referred
to the mean earth equator and equinox of 1950.0 is ¥ — ¢
where

r = position vector of spacecraft relative to center of
integration with rectangular components referred
to the mean earth equator and equinox of 1950.0,
i.e., the “1950.0” position vector

r{ = 1950.0 position vector of body i relative to the
center of integration C

The transformation from these 1950.0 body-centered coor-
dinates to body-fixed coordinates r;, is denoted as

=TT (r —x9) (162)

The overall transformation from (r — x¢) to ¥ is thus

¥ =RTT(r —1)=G(r —19) (183)
The inverse transformation is
(r—19) =Gy = TR"Y (164)
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Using ¥, from Eq. (162), the sines and cosines of ¢ and X
and the angle A are computed from

sing = 22 (165)
cos g = (x3 +ryi)‘/‘ (166)
sin = —(xH’f——W (167)
cos k= 72 f’yg)% (168)

The transformation T is currently specified in the
DPODP for the earth, the moon, and Mars. These and
most of the other coordinate transformations of the
DPODP were specified by F. M. Sturms. The formulation
for T for the earth is specified in Section VII. Sturms’
formulation for T for the moon and for Mars are specified
in JPL internal publications.®** He has specified modifi-
cations to the existing transformations and specified trans-
formations for the remaining planets and for the sun in
another internal publication.* Sturms also plans to pub-
lish this formulation in a JPL Technical Report.

Let ¥ denote the inertial acceleration of the spacecraft
due to the oblateness of any body with rectangular com-
ponents along the instantaneous directions of the ¥/, v/,
and z’ axes. This acceleration can be broken down into
¥ (J) due to the zonal harmonics J, and ¥ (C, S) due to
the tesseral harmonics C,, and S,». Given these terms,
the direct acceleration of the spacecraft due to the oblate-
ness of any body, with rectangular components referred
to the mean earth equator and equinox of 1950.0, is
given by

¥=G'Y =G [¥ (J) +¥(C,S)] (169)

The components of ¥ (J) and ¥ (C, S) are given by

U (J)

¥ = % H-(C,S) (170)

9Warner, M. R., et al., Double Precision Orbit Determination Pro-
gram, Vol. 111, TRAJ Segment, EPD 426 (JPL Internal Report),
June 15, 1967.
10Witt, J., User’s Guide for TRIC, 900-168 (JPL Internal Report),
Oct. 20, 1968.
1Sturms, F. M., New Coordinate Transformations for DPTRAJ,
RFP 392-16 (JPL Internal Report), Dec. 16, 1969.
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gy = Téis_q& %fi) (- (C,S) (171)
2= —i %@ N~ (C.$) (172)

Carrying out these differentiations gives

¥ () = %Z (%) [(n K P"] (173

e —cos¢ P,

0923035
n=1 m=1
—(n+ 1) P {Cpm cos mA + S,y sin mi}
X [m sec ¢ P { —Cup sin mr + S,m coOs m}:|
cos ¢ P {C,m cos mA + S, sinmi}

(174)

where the primes indicate derivatives with respect to
sin ¢. Currently, n, has a maximum value of 15 and n,
has a maximum value of 8. These limits will undoubtedly
be increased in a future version of the program.

The Legendre polynomial P, is computed recursively
from (Ref. 44, p. 308, Eq. II)

2n—1 n—1
P, = “n sing Py — ( - )p,,_z (175)
starting with
P,=1 (176)
P, =sin¢ (177)

The derivative of P, with respect to sin ¢, denoted Py, is
given by (Ref. 44, p. 308, Eq. I)

P,=sin¢ P, +nP,, (178)
starting with

=1 (179)

The function sec¢ P™ is computed by first generating
sec P* = (2n — 1) cos ¢ (sec ¢ P1) (180)

starting with

secgp Pt =1 (181)
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and continuing until n = n,, and then generating

sec ¢ P = ( n— m)sin¢(sec¢P,’:‘_1)

n
n+m-—1 "
- (W) (sec¢ P7)

(182)

For each value of m between 1 and n,, n is varied from
m + 1 to n,. The general term P? is zero if b > a. Equa-
tion (180) may be obtained by successive differentiation
of Eq. (175) with respect to sin¢ and substitution into
Eq. (155). Equation (182) was obtained from Ref. 45,
p- 161, Eq. 12. The function P is obtained by multiply-
ing (sec ¢ P™) by cos ¢.

The function cos ¢ P, where P is the derivative of
P™ with respect to sin ¢, is computed from (Ref. 45, p. 161,
Eq.19)

cos¢ P = —nsin ¢ (sec ¢ P) + (n + m) (sec ¢ P )
(183)

3. Indirect acceleration of center of integration due to
oblateness. As previously mentioned, the indirect oblate-
ness acceleration of the spacecraft relative to the center
of integration is the negative of the acceleration of the
center of integration due to oblateness. It is computed
only when the center of integration is the earth or moon
and accounts for the oblateness of both of these bodies.

The force of attraction between the earth and moon
consists of

(1) The force of attraction between the point-mass
earth and point-mass moon.

(2) The force of attraction between the oblate part of
the earth and the point-mass moon.

(3) The force of attraction between the oblate part of
the moon and the point-mass earth.

(4) The force of attraction between the oblate part of
the earth and the oblate part of the moon.

The force (1) is accounted for in Subsection V-B-1. The
formulation of this section will account for the forces (2)
and (3), but will ignore the force (4).

Let

¥y (E) = inertial acceleration of point-mass moon due
to the oblateness of the earth
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¥y (M) = inertial acceleration of point-mass earth due
to the oblateness of the moon

These accelerations, with rectangular components referred
to the mean earth equator and equinox of 1950.0, may be
computed from the formulation of Subsection V-B-2. In
the computation of ¥y (E), the moon is treated as the
spacecraft of Subsection V-B-2, and r — r¢ in Eq. (162) is
replaced by rZ. Similarly, in the computation of ¥z (M), the
earth is treated as the spacecraft and r — x¢ is replaced by
¥,

Consider the force of attraction between the earth and
moon due to the oblateness of the earth, assuming the

moon to be a point mass. This force produces ¥y (E) and
also

¥z (E) = inertial acceleration of the earth due to the
force of attraction between the oblate part of
the earth and the point-mass moon

Since these two accelerations are derived from equal and
opposite forces,

¥4 (E) = — —’ffm (E) (184)

Similarly, consider the force of attraction between the
earth and moon due to the oblateness of the moon, con-
sidering the earth to be a point mass. This force produces
¥z (M) and also

Yy (M) = inertial acceleration of the moon due to the
force of attraction between the oblate part of
the moon and the point-mass earth

Since these two accelerations are derived from equal and
opposite forces,

¥ (M) = — 2% (M)

ar

(185)

The acceleration of the earth due to the oblateness of
the earth and moon is

Yo = Yo (M) + ¥ (E)

=¥, (M) — 225, (B) (186)
HE
Similarly,
EM = 'l"’M (E) + :TUM (M)
= ¥y (E) — L2 %5 (M) (187)
J15%s
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Note that ¥z (M) is proportional to py and ¥y (E) is pro-
portional to ugz. The contribution to the spacecraft accel-
eration relative to the center of integration is the negative
of the acceleration of the center of integration, or

F= | B - 0| (89

where
If earth = center of integration, 4yu; = +par

If moon = center of integration, =p; = —pug

Sturms’ algorithm for computation of this acceleration
accounts for J,, C,,, and S,, of the earth and moon.
Equation (188), evaluated with these harmonic coeffi-
cients, is equivalent to Sturms’ formulation. An earlier
version of his formulation, which is based upon the prin-
cipal moments of inertia A, B, and C for the earth and
moon, is given in Ref. 46.

4. Acceleration of spacecrafi due to solar radiation
pressure and small forces originating in spacecraft. This
section gives the model for representing the acceleration
of the spacecraft due to solar radiation pressure and to
small forces originating in the spacecraft, such as those
from operation of the attitude control system (particularly
if it uses uncoupled attitude control jets) and from gas

leaks. The model applies to any spacecraft which has one
axis (the roll axis) continuously oriented toward the sun
and utilizes a star or planet tracker to orient the spacecraft
about the roll axis. The various Mariner spacecraft are of

this type.

The solar radiation pressure model accounts for the
acceleration of the spacecraft due to solar radiation pres-
sure acting along three mutually perpendicular space-
craft axes, one of which is the roll axis. Normally, the
solar panels are oriented normal to the roll axis so that the
largest component of the force due to solar radiation pres-
sure is along the roll axis. However, the model can also
account for the small forces acting along the other two
spacecraft axes and arising from departures of the space-
craft shape from rotational symmetry about the roll axis.

The small force model accounts in a crude fashion for
the acceleration arising from small forces originating in
the spacecraft. The component of this acceleration along
each spacecraft axis is represented as a quadratic. This
model is currently being expanded to allow this accelera-
tion to be represented alternatively as an exponential
decay with components along each spacecraft axis.

The acceleration of the spacecraft due to solar radiation
pressure and small forces originating in the spacecraft is
represented by

¥= {[ar F+ b, (t — Tacr) + ¢ (8 — Tacr)?] [t — Tacr) — u(t — Taos)]

ClAp

mrsp?

+ Aa, -+

[G, + GL(EPS) + AG,} u* (t — Tsnp)} Use

+ {[az -+ b_@ (t - TAOl) -+ Cg (t - TAcl)Z] [u (t —_ TAgl) — U (t had TAGZ)]

C.A,
Mmrgp®

+ Aa, +

+ {[ay + by (t - TA01) + Cy (t - TA(n)z] [u (t - TAgl) —u (t — TAgg)]

+ Ag, + ger’; [G, + G, (EPS) + AG,] w* (t — TSRP)} ¥+
8P

The terms in this equation are defined as
Uge = unit vector from sun to spacecraft

X* Y* = unit vectors along spacecraft x and y
axes (X* X Y* = Ug) (defined below)

where i = r, x, or y = solve-for coeffi-
cients of acceleration polynomials,
km/s?, km/s?, km/s*

t = ephemeris time

ai, b, ¢;

JPL TECHNICAL REPORT 32-1527

(189)

T 401, T 402 = epochs at which the acceleration
polynomials are turned on and off,
respectively. The epochs may be
specified in the UTC, ST, or Al time
scales. They must be transformed to
ET for use in Eq. (189). The transfor-
mation will be different for each itera-
tion of the orbit determination process
if the values of AT 455 OF Afogium are
estimated.
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Uu (t —_ TAgl) =] fOI' t = TACI, 0 fOl‘t < TAOl
T o1 —> Tace

Aa,, Ad,, Aa, = input acceleration (not solve-for),
km/s?. The value for each Aa; is
obtained by linear interpolation
between input points specified in any
time scale. The acceleration is started
at the epoch of the first point and
ended at the epoch of the last point.

JA;  1km* kmtkg
—c—'X 10m2 — 1.010 X 108 P

Il

C,

where
J = solar radiation constant
= 1.3525 X 10°W/m? (Ref. 47):
= 1.3525 X 10°kg/s*
Ap = 1.496 X 108 km
¢ = 2.997925 X 10°km/s

A, = nominal area of spacecraft projected
onto plane normal to sun-spacecraft
line, m?

m = instantaneous mass of spacecraft, kg
rsp = distance from sun to spacecraft, km

Tsrr = epoch at which acceleration due to
solar radiation pressure is turned on
(epoch of solar panel unfolding). The
epoch may be specified in the UTC,
ST, or Al time scales and must be
transformed to ET for use in Eq. (189).

u* (t — Tsgp) = 1for t = Tspp if spacecraft in sunlight,
0 for ¢ < Tsrp or if spacecraft in
shadow of a planet or the moon

G, = solve-for effective area for acceleration
of spacecraft in radial direction due to
solar radiation pressure, divided by
nominal area A,

120n July 20, 1970, the author of Ref. 47 stated that a more accu-

rate reduction of the data gave a value of 1.348 X 103 W/m?2.
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G, = solve-for effective area for acceleration
of spacecraft in the direction of its
positive x axis (along X* vector)
divided by A,

G, = solve-for effective area for acceleration
of spacecraft in the direction of its
positive y axis (along ¥* vector)
divided by A,

G, G5, G = solve-for derivatives of G,, G, G, with
respect to earth-spacecraft-sun angle,
EPS

EPS = earth-spacecraft-sun angle, rad

AG,, AG,, AG, = increments to G,, G,, and G, obtained
by linear interpolation of input points
specified in any time scale. The value
of AG; is computed at each integration
step contained between the epoch of
the first point and the epoch of the last
point.

The term G} (EPS) along each spacecraft axis was’
included so that the model would be compatible with the
Mariner 11 spacecraft, which contained a high-gain an-
tenna that moved continuously with respect to the space-
craft axes and always pointed toward the earth. These
terms account for the variation in G,, G,, and G, due to
this moving antenna.

The Mariner IV spacecraft contained movable attitude
control vanes situated at the end of each solar panel.
Movement of these vanes caused G,, G,, and G, to fluc-
tuate with time. The AG; terms account for these fluc-
tuations.

The unit sun-spacecraft vector Ugp is computed from

— pC
r—r$

Use =g

(190)
where

r = position vector of spacecraft relative to center of
integration with rectangular components referred
to the mean earth equator and equinox of 1950.0

r = 1950.0 position vector of sun relative to center of
integration C
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The spacecraft X* and Y* unit vectors are obtained as a
rotation of the tangential T and normal N vectors through
the angle K:

N
K

Y*

.o cosK sinK)[T
Y| | —sinK cosK||N

The angle K is an input (non-solve-for) constant. Com-
putation of the unit vectors T and N requires the unit
vector Uy

(191)

Ur = unit vector from spacecraft to reference body
which orients the spacecraft about the roll axis
(sun—spacecraft line). The reference body may be
a star, a planet, or the moon.

If the reference body is a star,

cos 8 cos a
Ur =1 cosdsinea

sin &

(192)

where the right ascension « and declination & of the star
are referred to the mean earth equator and equinox of
1950.0. If the reference body B is a planet or the moon
(normally the earth),

—r

Ve = T =x]]

(193)

where

r§ = 1950.0 position vector of reference body B rela-
tive to center of integration C

The unit normal vector N (normal to sun-spacecraft-
reference body plane) is computed from

Up, X Usp

N = 0. X Uer |

(194)
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The unit tangential vector T (tangent to sun-spacecraft—
reference body plane) is

Given T and N, the vectors X* and Y* are given by
Eqs. (191). The angle K may be selected to achieve a
specific orientation of X* and Y* relative to the space-
craft.

The EPS angle may be computed from

cosEPS = —Ugp Uz  0< EPS<180°  (196)

where
U% is computed from Eq. (193) using B = earth.

5. Acceleration due to motor burn. The acceleration of
the spacecraft due to a motor burn is represented by

¥f=aUlu(t—T,) —u(t—T)] km/s® (197)

where
a = magnitude of ¥
U = unit vector in direction of ¥

T, = effective start time of motor, the ET value
of the solve-for epoch, which may be
specified in the UTC, ST, or Al time
scales

T; = effective stop time of motor, ET
t = ephemeris time

lfort=T,

u(t—T")z{Ofort<To T,~>T;

The effective stop time T is given by

T/ =T, +T (198)
where
T = solve-for burn time of motor, ET seconds
The acceleration magnitude a is given by
. 11; ((?) c= F,+ Fif + F;2 +1F3i3 + F.t* c

s 1 Ly o 1 ® .
m, — Mt — —é-Mltz -3 M., ——4__M3t4
(199)
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where

F (t) = magnitude of thrust at time . The
polynomial coefficients of F (t) are
solve-for parameters

t =t~ T, seconds
m () = spacecraft mass at time ¢
m, = spacecraft mass at T,

M,, M, M, M, = polynomial coefficients of propellant
mass flow rate (positive) at time :
M (t) = M, + M.F + M, + M
(not solve-for parameters)
C = 0.001 for F in newtons and m in kg.

For F inIb and m in 1bm,
C = 0.00980665

The unit vector U in the direction of thrust is given by
U, cos 8 cos &
U=|U, (=] cosdsine
U. sin §

«, 8 = right ascension and declination, respectively, of
U, referred to the mean earth equator and equi-
nox of 1950.0

(200)

where

given by

o« = g + ali + C!g-iz + 123?3 + Cl!4—i4
§ =8, + 8,8 + 8,82 + 5,8° + 8,4

(201)
(202)

where the polynomial coefficients of Egs. (201) and (202)
are solve-for parameters.

VI. Light Time Solution

This section gives the formulation and procedure for
solution of the light time problem, which is the first step
in the computation of all observable quantities.

A. introduciion

An electromagnetic signal is transmitted from a tracking
station on earth at time ¢;. This signal is received by the
spacecraft (either a free spacecraft or a landed spacecraft
on the moon or on one of the planets) and retransmitted
at time t,, arriving at the same or a different tracking sta-
tion on earth at time #;. Alternatively, the signal may be
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transmitted directly by the spacecraft at time #,. All ob-
servables are related to characteristics of this electromag-
netic radiation, i.e., the angle of the incoming ray, the ratio
of received to transmitted frequency, or the round-trip
transit time. The transmitting station, the spacecraft, and
the receiving station are referred to as direct participants,
and &, ., and 5, respectively, are their epochs of partici-
pation. The solution of the light time problem consists
of these epochs of participation and the heliocentric posi-
tion, velocity, acceleration, and jerk of each direct par-
ticipant evaluated at its epoch of participation. The
rectangular components of these vectors are referred to
the mean earth equator and equinox of 1950.0. Sections
VIII-XI give the formulations for computing doppler,
range, and angular observables, starting with the solu-
tion to the light time problem.

The solution to the light time problem is obtained by
solving the light time equation for each leg of the path
of electromagnetic radiation from the transmitting to
the receiving station. The light time equation relates the
light time between two points to the heliocentric posi-
tions of each of the two participants evaluated at their
epochs of participation. Starting with the known recep-
tion time #;, the light time equation is solved by an
iterative technique for the down leg of the light path
to give the epoch of participation for the spacecraft, £,.
Given t,, the light time equation is solved iteratively for
the up leg of the light path to give the transmission
time ¢,.

Section VI-B gives the formulation for solution of the
light time problem; the detailed procedure is given in
Section VI-C.

B. Formuiation
Let the subscripts i or § equal 1, 2, or 3 where

1 refers to the transmitting station on earth at the trans-
mission time #,

2 refers to the spacecraft (free or landed) at the reflec-
tion time £,

3 refers to the receiving station on earth at the recep-
tion time %,
The time for light to travel from point i at ephemeris time
(coordinate time) ¢; to point j at ephemeris time ¢; is
given by Eq. (88), repeated here:

tj_’tiz‘fi];‘i“ (1+7)/len(1'i+7’,-+ri,-

c c? 7y 1 — 13

> (203)
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where

riy =[xy || = |25 (&) — 25 (85)|

r = || x5 (&)

= |75 (&)l

¥¥ (;),x5 (#;) = heliocentric position vector of point i at

transmission time #; and point § at recep-
tion time t;, with rectangular compo-
nents referred to the mean earth equator
and equinox of 1950.0

¢ = speed of light, km/s
ps = gravitational constant of sun, km?/s?

y = solve-for free parameter of Brans-Dicke
theory of relativity. The parameter y is
related to o, the coupling constant of
the scalar field, through Eq. (41).

Equation (203), which is referred to as the light time
equation, relates the light time in ephemeris time for a
given leg of the light path to the heliocentric position
vectors of the two participants evaluated at their epochs
of participation. The light time equation applies to the
down leg of the light path when ¢ =2 and j = 3; when
i=1 and j = 2, it applies to the up leg.

Let

ri = r;; = position vector of point j relative to point i,
with rectangular components referred to the
mean earth equator and equinox of 1950.0.

With this notation, the heliocentric position vectors of
the transmitter, spacecraft, and receiver at their epochs
of participation are computed from the following equa-
tions. For the transmitter,

¥8(t) =¥ [t (UTL), £ (ET)] + 13[4 (ET)]  (204)

where S = sun and E = earth. Similarly, for the receiver,
¥ (k) = 12 [ts (UTL), & (ET)] +r3[&: (ET)]  (205)

For a free spacecraft S/C, with center of integration C,

1] (t2) = 15,0 [£2 (ET)] + 15[t (ET)] (206)
For a landed spacecraft on body B,
1} (t:) = 1§ [ (ET)] + r3 [ (ET)] (207)
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Each of these 1950.0 vector sums applies with r replaced
by 1, ¥, and Y. The heliocentric position, velocity, accel-
eration, and jerk of the earth, as well as the center of
integration or the body upon which the spacecraft has
landed are obtained as indicated in Section IV. The
position, velocity, acceleration and jerk of the spacecraft
relative to the center of integration are obtained by inter-
polation of the spacecraft ephemeris sum and difference
arrays. The formulation for computing the 1950.0 position,
velocity, acceleration, and jerk of a tracking station rela-
tive to the earth or of a landed spacecraft relative to the
body B on which it is located is given in Section VII. The
geocentric 1950.0 position and higher derivatives for a
tracking station are primarily functions of the UT1 value
of the epoch, although the ET value is also required.

Solution of the light time equation (Eq. 203) for a given
leg of the light path gives the transmission time #; for
that leg. The time #; is used to compute r(%;) in the
evaluation of the right-hand side of the light time equa-
tion and also appears explicitly in the left-hand side. The
light time equation must be solved for ¢; by an iterative
technique. The DPODP uses the Newton-Raphson
method. Let the function f whose value is to be minimized
be the left-hand side of the light time equation minus
the right-hand side:

f=t—t—

Mg (1+7)Msln r; ;o
C ct 1'1',+’l’j"1'.;,'

(208)

When the relativity term is ignored, the partial derivative
of f with respect to ¢; is

af = 1 ;.
Bti - 1+ C T;; l"?(t—b)

(209)

Let A(%;) equal the linear differential correction to the
estimate of ¢;. Then

of
ot

At;) = —f (210)

Substituting Eqgs. (208) and (209) into Eq. (210) gives

t,-—ti——!—ij-— (1 +Y)p'sln(ri+rj+r”>
Alt) = ¢ ¢t Tt — 1y
1 ~ LI
c 1y !
(211).
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The procedure for using this iterative formula for obtain-
ing the transmission time £, for the down leg and the
transmission time ¢, for the up leg is given in the follow-
ing section.

€. Procedure
The procedure is as follows:

(1) Convert the observation time #;(ST) to ¢, (UTC),
t;(Al), £ (UTL), and ¢; (ET) using the time trans-
formations of Section III. Compute 1§ (¢;) from
Eq. (205). Compute also ¥$ (£5), ¥ (£s), TS (£s).

(2) Obtain the first estimate for ¢, (ET) as

(a) For the first observation of the spacecraft on a
pass of the spacecraft relative to the receiving
station, £, = ;.

(b) For the remaining observations of the pass,
t, = t; minus the converged light time for the
down leg of the previous observation.

(3) Given the estimate for ¢, (ET), compute 15 (£,), 5 (,),
¥ (t,), and¥S (£.) from Eq. (206) or (207) and A (£;)
from Eq. (211). The next estimate for ¢, is , + A (£).
Repeat step 3 until A (£,) <10 s. (On the IBM 7094

computer, time is represented as double-precision’

seconds past January 1, 1950, 0% to a precision of
0.6 X 10-" s from 1967 to 1984.)

(4) Obtain the first estimate for ¢, (ET) as ¢, minus the
converged light time for the down leg of the cur-
rent observable.

(5) Convert the estimate for £, (ET) to ¢, (Al), ¢, (UTC),
t, (UT1), and £, (ST). Compute =5 (£,), ¥ (¢,), 5 (t2),
and’t8 (#,) from Eq. (204) and A (¢,) from Eq. (211).
The next estimate for #, is £, + A (¢,). Repeat step 5
until A (t;) < 107 s.

Most of the intermediate quantities used in the compu-
tation of the heliocentric position, velocity, acceleration,
and jerk of each participant at its epoch of participation
are saved and used in the computation of the observable
and the partial derivatives of the observable with respect
to the estimated parameters.
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Vi, Body-Centered 1950.0 Position, Velocity,
Acceleration, and Jerk of Tracking Station
and Landed Spacecraft

A, Introduction

This section gives the formulation for computation of
the position, velocity, acceleration, and jerk of a tracking
station relative to the center of the earth or of a landed
spacecraft relative to the center of the body on which it is
located, with rectangular components referred to the
mean earth equator and equinox of 1950.0. In addition
to a fixed tracking station, a model is included for repre-
senting the motion of a tracking ship.

The first step in the computation of 1950.0 position,
velocity, acceleration, and jerk is to obtain the “body-
fixed” position r; (and also velocity, acceleration, and jerk
in the case of a tracking ship), where x; is along the inter-
section of the prime meridian (passing through the instan-
taneous axis of rotation) and the instantaneous equator,
where z; is along the instantaneous axis of rotation,
directed north, and where y; completes the right-handed
rectangular coordinate system.

Given 1, (and higher derivatives for a tracking ship),
the 1950.0 position, velocity, acceleration, and jerk are
obtained from the transformation matrix T (which relates
these two coordinate systems) and from T, T, and T. As
mentioned in Section V, these transformations are cur-
rently specified for the earth, the moon, and Mars. The
transformations for the remaining planets and for the sun
have been specified by F. M. Sturms and will be added to
the program in the near future.

The location of a fixed tracking station on earth is
specified by its spherical or cylindrical coordinates rela-
tive to the mean pole, equator, and prime meridian of
1903.0. These station coordinates are solve-for parameters.
Because the pole (axis of rotation) wanders relative to
the earth, the “body-fixed” coordinate system moves rela-
tive to the earth and the “body-fixed” position r; of a fixed
tracking station on earth is a variable quantity. It is com-
puted from the time-varying coordinates of the true pole
of date relative to the mean pole of 1903.0 supplied by the
B.LH.** The location of a landed spacecraft on a planet
or the moon is specified by constant spherical or cylin-
drical coordinates (solve-for parameters) relative to the
body-fixed coordinate system. The body-fixed position of
a tracking ship is specified by its spherical coordinates

13Bureau International de 'Heure,
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at an arbitrary epoch, and by its azimuth and velocity;
the values of these five parameters may be estimated. The
value of the geocentric radius to the ship is constant.

Section VII-B gives the formulation for computing
body-fixed position (and higher derivatives for a tracking
ship). Section VII-C gives the general formulation for
transforming these quantities to 1950.0 position, velocity,
acceleration, and jerk using the transformation matrices
T, T, T, and T. These matrices are specified for the earth
in Section VII-D.

B. Body-Fixed Reciangular Coordinates

1. Fixed tracking station or landed spacecraft. For a
tracking station on earth or a landed spacecraft on the
moon or a planet, the spherical coordinates referred to
the %2 “body-fixed” coordinate system are

r = radius from center of body, km

¢ = body-centered latitude measured from true equator
(plane normal to instantaneous axis of rotation and
containing center of mass)

A = longitude measured east from prime meridian
(passing through instantaneous axis of rotation)

The cylindrical coordinates are

u = distance from spin axis (instantaneous axis of rota-
tion}), km

= rcos¢
v = height above true equator, km
=rsin¢g

A = longitude measured east from prime meridian
(passing through instantaneous axis of rotation)

For spherical coordinates, the body-fixed rectangular
coordinates are

Xy 7 COS ¢ COS A
n=| Yy |=] rcos¢sinr (212)
Zp rsin ¢
For cylindrical coordinates,
Xp Ucos
Ys usin (213)
b v
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For a landed spacecraft on a planet or the moon, the
spherical or cylindrical coordinates are constant and are
solve-for parameters. For a tracking station on earth, the
solve-for parameters are the spherical or cylindrical
coordinates relative to the mean pole, equator, and prime
meridian of 1903.0. The spherical coordinates are denoted
by r, o, and Ao; the cylindrical coordinates are denoted by
Uy, Uo, and Aq. The transformations from these 1903.0 coor-
dinates to those referred to the “body-fixed” coordinate
system are

¢ = ¢o + AP (214)
A= + AL (215)
u=u,+ Au (216)
v = v, + Av (217)

The formulas for computing the corrections A¢, A), Au,
and Av are derived below. Given the body-fixed spherical
or cylindrical coordinates, the rectangular components of
1y are computed from Eq. (212) or (213).

Figure 4 shows the latitude ¢, and longitude A, of a
tracking station S relative to the mean pole of 1903.0 (P,),
and the instantaneous latitude ¢ and longitude A relative
to the true pole of date (P). The pole P, and associated
grid of equator and meridians is rotated through the
angle o carrying P, to P. The angular coordinates of P

90°E MERIDIAN
OF 1903.0

GREENWICH MERIDIAN Py
OF 1903.0

90°-4,
TRUE

GREENWICH
MERIDIAN

EQUATOR OF
1903.0

TRUE EQUATOR

Fig. 4. Lotitude and longiiude relative to mean pole
of 1903.0 and true pole of date
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relative to P, are x measured south along the Greenwich
meridian of 1903.0 (strictly the 1903.0 meridian of zero
longitude) and y measured south along the 90°W merid-
ian of 1903.0. Values of x and y are obtained from the
B.LH. They are represented by linear polynomials:

x=1+mt (218)

y=p+qt (219)

The coefficients I, m, p, and q are specified by time block,
usually of one month’s duration, and ¢ is in seconds past
the start of the time block. Since the angles x and y cor-
respond to a displacement along the earth’s surface of
only a few meters (to date the maximum value has been
about 10 m), an approximate expression for A¢ = ¢ — ¢
is

A = xCOS A, — Ysin A, (220)
Noting @, and « on Fig. 4, one obtains

Xo = o + tan™ ( _xy) (221)

) =a-+ tan ( _xy) (222)
Thus,

AA.:A.’—'/\():CY—QO (223)
From the spherical triangle PP, S,

sine,  sina (224)

COS ¢ " cos bo
Cross multiplying and using Egs. (223) and (214) gives
sin @, cos ¢o = sin (@, + AL) cos (¢ + Ad)

(225)

Expanding, noting that AA and A¢ are very small angles,
and ignoring the higher-order term containing A\ A¢ gives

A) = tan ap tan ¢, Ad (226)
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From Eq. (221),

tan A, + %
tan ¢y = —————————o (227)
1- —Z— tan A,

Substituting Eqs. (220) and (227) into Eq. (226) gives
AX = tan ¢, (xsin Ao + y cos Ao) (228)

The cylindrical coordinates relative to the pole of 1903.0

and the true pole of date are
Uy = 1 COS o © = rcos¢ =rcos (¢, + Ap)  (229)
Dy = rsing, v =rsin¢ =rsin(p, + A¢)  (230)
Solving for Au = u — u, and Av = v — v, gives
Au = —0,4A¢ (231)
AU = Uy Ad (232)

where A¢ is given by Eq. (220). Using cylindrical coordi-
nates, A\ is computed from

AL = % (x sin Ao + y cOs Ao) (233)
0

The “body-fixed” position r;, of a fixed tracking station
on earth varies with the motion of the pole, and hence
the body-fixed velocity ; is non-zero. However, its maxi-
mum magnitude is about 2 X 10-¢ m/s, which is less than
the desired accuracy of 10-° m/s for computed doppler
observables. Hence ¥; is taken to be zero.

For a description of the wandering of the earth’s axis
of rotation, see Ref. 48.

2. Moving tracking ship. The ship is assumed to move
on a sphere of radius r at constant azimuth A measured
east of north, and at constant speed v. The ship passes
through the point with latitude ¢, and longitude A, at time
t, (UTC). All quantities are referenced to the x5 y» 2, body-
fixed coordinate system defined in Section VII-A. The
parameters 7, ¢,, Ao, U, and A are solve-for parameters.
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The velocity along the meridian is given by

r$ =vcos A (234)
Thus the latitude may be expressed as
b =do + "“;SA [¢(UTC) — £, (UTC)]  (235)
The velocity normal to the meridian is given by
rcos-pA = vsin A (236)

Equation (23(:}) can be integrated by replacing df in
the integral of Adt by rd¢/vcos A from Eq. (234). The
result is

This expression is indeterminate for A = 90 or 270 deg. For
these cases, compute

v

COS {1)0

A.:)\.oi

[t (UTC) — £, (UTC)]

+ for A = 90deg

— for A = 270 deg (238)

Given ¢ from Eq. (235) and A from Eq. (237) or (238),
1y is given by Eq. (212), repeated here:

COS ¢ COS A
=] cos¢sinA |r

sin ¢

(239)

Differentiation with respect to time using Eqgs. (234)

tan (-} + % and (236) gives
A=Mx +tanAln
tan(%+ %3) —cos Asin$ cosA — sinAsin A
f; =| —cosAsingsinA +sinAcosA |v (240)
A =£90 deg, 270 deg (237) cos A cos ¢
Similarly, differentiation of this equation gives
— ., -
- (cos2 Acos¢ + = A) cos A + (sin Acos Atan¢) sin A
COS ¢
¥»=| —[cos?Acos¢ + sin® A sin A — (sin A cos A tan ¢) cos A v
cos ¢ r (241)
—cos®Asin ¢

Equation (241) would be simpler if the tracking ship
were moving along a great circle (at varying azimuth A).
The transformation from body-fixed position, velocity,
and acceleration to 1950.0 position, velocity, acceleration,
and jerk is given in the next section. The body-fixed jerk
(¥;) is ignored since its maximum contribution of about
10~ m/s to computed doppler is considerably smaller
than the accuracy of tracking-ship data.

€. Transformation of Body-Fixed Rectangular
Coordinates to 1950.0 Pesition, Velocity,
Acceleration, and Jerk

Let the 1950.0 position, velocity, acceleration, and jerk
of a fixed tracking station, a moving tracking ship, or a
landed spacecraft relative to the center of the body i on
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which it is located be denoted by rsy, 50, ¥s0, and Tyo.
The transformation from the body-fixed position vector
1p to the 1950.0 position vector 15, is given by

Y50 = Til'b (242)

where T; is the 3 X 3 transformation matrix for the body
i in question.

For a fixed tracking station on earth or a landed space-
craft on a planet or the moon, 1, is negligibly small and
is taken to be zero. Thus,

1.‘50 = f’m, (243)
i'=50 = i:il‘b (244)
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v 300
Y50 = Tty

(245)

For a moving tracking ship, ¥, and ¥, are nonzero and
T is ignored. Thus,

so = L'nTy (246)
f20 = Tury + Txs (247)
¥so = Tgry + 2Tty + Tty (248)
Fro = Tary + 3Tty + 3T, (249)

where Tzt has been ignored in Eq. (249).

The formulation for computing the transformation
matrices T;, T;, T@, and T; for the earth (i = E) is given
in the next section.

D. Body-Fixed to Space-Fixed Transformation
for the Earth

For the earth, the transformation T is given by the
product of three 3 X 3 matrices:

Ty = (BNA)T (250)
Substituting Eq. (250) into Eq. (242) gives
Tso = Terpy = (BNA) 1y (251)
or
15 = T% 150 = BNAT, (252)

The matrices A, N, and B are defined as

A = precession matrix, transforming from coordinates
referred to the mean earth equator and equinox
of 1950.0 to coordinates referred to the mean
earth equator and equinox of date

N = nutation matrix, transforming from coordinates
referred to the mean earth equator and equinox
of date to coordinates referred to the true earth
equator and equinox of date

B = rotation from coordinates referred to the true
earth equator and equinox of date to body-fixed
coordinates r, = (%5, Yp, 2)7, Where x; is along
the intersection of the prime meridian (passing
through the instantaneous axis of rotation) and
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the instantaneous equator, z; is along the instan-
taneous axis of rotation, directed north, and y,
completes the right-handed rectangular coordi-
nate systen.

The matrix B is given by
cosf sing O
B=| —sinf cosd O (253)
0 0 1

where

6 = apparent (true) sidereal time = Greenwich hour
angle of true equinox of date

The derivative of Ty with respect to ephemeris time TE
is given by
Ty = (BNA + BNA + BNAY” (254)
The formulation for computation of the precession ma-
trix A, the nutation matrix N, and tl.leir derivatives with
respect to ephemeris time, A and N, is given in a JPL
internal publication.* Differentiation of B with respect
to ephemeris time gives
cosd 0
—sind 0 |

. —sin §
B =] —cosf

0 0 0

(255)

where 6 is the derivative of 6 with respect to ephemeris
time.

The contribution to the “space-fixed” velocity of the
tracking station relative to the center of the earth, 5,
from the precession and nutation rates is a maximum of
about 10* m/s. Since doppler observables are computed
to an accuracy of 105 m/s, these terms are included in
Eq. (254). The computation of doppler observables also
requires the acceleration and jerk of each participant;
however, only approximate values are needed. Thus, Ty

and Ty are obtained by differentiation of Ty =~ (BNA)T
holding N and A constant:
T, ~ (BNA) (256)
Ty~ (BNA)T (257)

14Warner, M. R., et al., Double Precision Orbit Determination Pro-
gram, Vol. II1, TRAJ Segment, EPD 426 (JPL Internal Report),
June 15, 1967.
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The second and third derivatives of B with respect to
ephemeris time are obtained by successive differentiation
of Eq. (255). However, the sidereal rate ¢ in Eq. (255) is
an extremely constant quantity and is held fixed during
this differentiation. The resulting expressions are:

.. [—cosf —sinf 0 7
B=~| sinf —cosé 0 |42 (258)

0 0 0 |

I~ sinf —cosf O 7
B~| cosd sing 0 |¢° (259)

0 0 0 |

The neglected terms of Tz and T5 contribute less than
10-* m/s to the computed doppler observables.

The true sidereal time @ and true sidereal rate § are
computed from the following formulation (where dots
indicate differentiation with respect to ephemeris time).
Let

fx = mean sidereal time = Greenwich hour angle of
mean equinox of date

8¢ = nutation in longitude = longitude of mean equi-
nox relative to true equinox

8€ = nutation in obliquity
€ = true obliquity of ecliptic

€= mean obliquity of ecliptic

Then,
0= 0y + 8ycose (rad) (260)
0=y + 8y cose — &8y sine (rad/s) (261)
€= €+ 8¢ (rad) (262)
&=E€+ s¢ (rad/s) (263)
From Ref. 25, p. 98,
=t i () @00
where
A = 23027'8"26 = 84,428"26
B = —46"845
C = —070059
D = 0700181
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T = Julian centuries of 36,525 ephemeris days elapsed
since January 0, 1900, 12 ET

The quantity T is computed from

JED — 241 5020 ET

3655 00 T 56400 < 3652

(265)

T =

where
JED = Julian ephemeris date

ET = seconds of ephemeris time from January 1,
1950, 0 ET

Differentiation of Eq. (264) with respect to ET gives

B + 2CT + 3DT* 4
86,400 X 36,525 % 20626480625 (124/%)
(266)

£
€=

The nutations 8¢ and 8¢ and their derivatives 8y and 8¢
are contained on the n-body ephemeris tapes (described
in Section IV). The nutations 8¢ and 8¢ are based upon
the theory of E. W. Woolard (Ref. 49). The derivatives
8y and € are obtained by numerical differentiation.

Mean sidereal time 6 is a function of universal time.
The expression for 0y is obtained by substituting Ry (UT)
from Eq. (91) into Eq. (92). Since 6y is the hour angle of
the mean equinox of date measured from the 0° meridian
passing through the instantaneous axis of rotation, it
should be computed specifically from UT1 (see Sec-
tion III). Thus, from Eqs. (91) and (92),

0y =UTL+ ]+ KTy + LT (angular seconds, ®)
(267)
where'*

UTI = seconds of UT1 time past January 1, 1950, O
UT1

J = 6°38"45:836 = 23,925°836
K = 8,640,184:542
L = 020929

Ty = number of Julian centuries of 36,525 days of
UT1 elapsed since January 0, 1900, 12* UT1

15Note that 1 second of UT1 time is the time for the angle UT1
(see Section III) to change by 1 angular second (86,400 angu-
lar seconds = 27 radians).
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The quantity Ty is computed from where
JD (UT1) — 2415020 UT1 JD (UT1) = Julian date computed from UT1
Ty= =05 + g
i 36,525 86,400 X 36,525 Substituting Eq. (267) into Eq. (260), and removing multi-
(268)  ples of 2x so that 0 < § < 2 gives
_[/UT1+ ]+ KTy + LTE | 8ycose
0 B [( 86’400 + 27r )decima! part] 27" (rad) (269)

The quantities UT1/86,400 and KT;/86,400 currently have magnitudes of about 7,000 revolutions (1 revolution of § = 2
radians of §) and 70 revolutions, respectively. Thus, when taking the decimal part of 9 expressed as revolutions, four
decimal digits are lost. Since double precision on the IBM 7094 is about 16 decimal digits, 6 is represented to a precision
of about 12 figures or 2= X 102 rad. For a tracking station with spin axis distance u of 6 X 10¢ m, its longitudinal posi-

tion is represented to a precision of about 4 X 10-% m.

Differentiating Eq. (267) with respect to ET gives

. dUT1 K+ 2LT, 7 . .
Oy = BT (1 36505 X 86::100) 33,900 (radian/ephemeris second) (270)
From Section III,
UT1 = ET — (ET — Al) — (A1 — UT1) (271)
and
dUTl _ Afcesium
dET ~ 't 10631770 € 2t #2)
where
t = seconds past start of current time block for polynomial coefficients £, g, and h of Eq. (96).
Substituting Eq. (272) into Eq. (270) gives
. K+ 2LTy Af cesium "n' ) )
Ox = (1 + 36,525 X 86,400 40()) (1 + 0192.63.770 &~ 2ht> B300 (radian/ephemeris second) (273)

Given 8y, 6 is computed from Eq. (261).

The term g -+ 2ht in Eq. (273) has a typical magnitude
of 3X10® and affects the geocentric tracking station
velocity by about 10-% m/s, which is the accuracy of com-
puted doppler observables. Since Afcesium is probably no
more than 5, the term Afces1um/9,192,631,770 is probably
not significant. In the derivation of Eq. (272), the annual
relativity term of ET — Al (Eq. 93) was not differentiated.
The derivative of this term has a maximum magnitude
of about 3 X 10-*°, which is not significant. Equation (65)
is a more accurate expression for (ET — Al) than Eq. (93)
used in the general time transformation subroutine. The
time derivatives of the additional relativity terms of
Eq. (65) are 1.5 X 10-*° or smaller.
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Viil. Doppler Observables

This section gives the formulation for computation of
doppler observables, namely, 1-way doppler, 2-way dop-
pler, and 3-way doppler.

A, Introduciion

For 1-way doppler, an electromagnetic signal is trans-
mitted continuously from the spacecraft and received by
a tracking station on earth. For 2-way doppler, the signal
is transmitted continuously from a tracking station on
earth, received and retransmitted by the spacecraft, and
received continuously by the same tracking station. The
signal may also be received by a different tracking sta-
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tion; in this case, the resulting observable is 3-way dop-
pler. For each of these cases, the frequency of the received
signal differs from that of the transmitted signal because
of the doppler shift. The observable is the average value
of this frequency shift over a period of time called the
count time or count interval T,. It is proportional to the
average range rate along the light path from the transmit-
ter to the receiver during T, or, more accurately, to the
change in range along this light path during T'.. The count
intervals for successive observables are contiguous.

The expression for computing each of these observables
is obtained by expressing the frequency shift in a Taylor
series, with coefficients evaluated at the midpoint of the
count interval, and integrating term by term. The odd
derivatives of the frequency shift vanish and the fourth
and higher even derivatives are ignored. Thus, doppler
observables are computed from the frequency shift and
its second time derivative evaluated along the light path
whose reception time at the receiving station is the mid-
point of the count interval.

For observables computed to an accuracy of 10° m/s,
truncation of the Taylor series limits the count time to
values as low as 1-10 s when the spacecraft is very near
the earth or another planet. When the spacecraft is in
heliocentric cruise, count times as large as 1,000 s may
be used. In each of these cases, however, larger count
times may be used if the observable is computed from
the subinterval doppler formulation. For this case, the
count interval is divided into m subintervals, each of
which is short enough so that the Taylor series truncation
error is negligible. The observable is the sum of the
observables computed for each subinterval divided by m.

In a future version of the DPODP, the Taylor-series
doppler formulation will be replaced or supplemented by
the differenced-range doppler formulation described in
Section XI. The primary advantage of differenced-range
doppler is that there is no upper limit to the count time.

The formulation for computation of 1-way, 2-way, and
3-way doppler from the frequency shift and its second
time derivative is given in Section VIII-B, and the formu-
las for computing these two quantities are given in Sec-
tions VIII-C and -D. The equation for computing each
doppler observable contains a correction term A, which
accounts for the effects of the troposphere, the ionosphere,
and the motion of the tracking point on the antenna dur-
ing the count time. The computation of A is described
in Section XII.
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B. General Expressions

An intermediate output from the electronic equipment
at the receiving station on earth is a signal whose fre-
quency in cycles per second of station time (ST) is de-
noted by f. This signal contains the doppler frequency
shift’® and a bias frequency whose primary purpose is
to keep f positive when the spacecraft range rate is nega-
tive. For l-way, 2-way, and 3-way doppler, the expres-
sions for f are

£, = C; — Cofs0 (%—) (274)
f=Gihe—fue) ()] +e. @)
fi = €= Cufa(6) (12) (276)

where C, to C; are constants, defined below, and

fs/c = spacecraft auxiliary transponder oscillator fre-
quency, cycles per UTC second [9,192,631,770
(1—S8) cycles'” of imaginary cesium atomic clock
carried by spacecraft]

The quantity fso is the frequency of the signal trans-
mitted by the spacecraft for 1-way doppler. It is repre-
sented by

fs/g = fTO -+ AfTO -+ le (tg et tg) + fTZ (tz - to)z (277)

where
fr,= nominal value of fs/¢

Afry, fr,, fr, = solve-for parameters, specified by time
block

t, = UTC epoch at start of time block

t, = UTC value of spacecraft transmission
time

The remaining quantities in Egs. (274-278) are defined
as

fr/fr = ratio of received to transmitted fre-
quency (for unity frequency multiplica-
tion at spacecraft). The received fre-
quency fr is measured in cycles per sec-
ond of station time ST derived from the

16The transmitted frequency minus the received frequency.
17See Subsection III-A-4.
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atomic frequency standard at the receiv-
ing station. For 2-way or 3-way doppler,
the transmitted frequency fr is mea-
sured in cycles per second of ST
derived from the atomic frequency stan-
dard at the transmitting station. For
1-way doppler, fr is measured in cycles
per UTC second (9,192,631,770 (1 — S)
cyclest” of imaginary cesium atomic
clock at spacecraft).

fa(t1), f¢(ts) = reference oscillator frequency at trans-
mitting station, cycles per second of
ST (derived from transmitter atomic fre-
quency standard), evaluated at trans-
mission time #, and reception time t;,
respectively.*® The frequency f, is reset
periodically but remains constant be-
tween settings. The doppler formula-
tion presumes that f, (£;) is constant over
the reception interval T, for 2-way dop-
pler and that f, (¢,) is constant over the
transmission interval. If these intervals
overlap for 2-way doppler, f,(f,) must
equal f, (t;).

The doppler tracking equipment originally operated in
the L-band frequency range.!* Later, the system was
changed to operate in the S-band range.?® In the interim
period, some tracking data were obtained in the so-called
L~S configuration (modified L-band tracking stations with
an S-band transponder on the spacecraft). The DPODP
has the capability of processing doppler tracking data
from each of these frequency bands. The only change in
the doppler formulation due to changing the frequency
band is the change in the values of the coefficients C,
through Cs:

930.15 X 108 L-band
C. = 9.375 X 10° + 30K, (%) L-S band
=
240
96 <§2—1) K, (t3) + 10¢ S-band

18Note that f, (£:) applies only for 2-way doppler.
19390-1550 MHz.
201550-5200 MHz.
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31
‘3—2‘ L-band
C,=14( 30
"9-6— L—-S band
1 S-band
96
30 (§9—> L-band
C.= 240
96 (Eé—l—) S-band
10° L-band
C,=
10¢ S-band
31 96
30 <§§) (@) L-band
240
C;=¢ 30 (‘2‘-2—1“ L-S band
240
96 <’§:2—i'> S-band

where

K, (ts) = receiver reference oscillator (synthesizer) fre-
quency at reception time ¢; for L-S band
doppler. The frequency K, (t;) is different
from f,(t.).

Ky (t;) = receiver reference oscillator frequency at re-
ception time %, for S-band doppler. The re-
ceiver and transmitter reference oscillators
are physically the same and operate at the
same nominal frequency.

As with f,, both of these frequencies are reset periodi-
cally but remain constant between settings. The doppler
formulation presumes that K, (t;) and Ky (¢;) are constant
over the reception interval T,. Two-way L-S band dop-
pler is computed from the 3-way formulation. Hence,
L-S band values of C; and C, do not exist.

The second term of Egs. (274), (275), and (2786) is the
frequency of the received signal (relative to ST at the
receiving station). The first term (plus C, for 2-way dop-
pler) is the frequency of a reference signal derived from
the receiver atomic frequency standard.
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For 2-way doppler, the reference frequency and re-
ceived frequency are derived from the same atomic fre-
quency standard. Hence 2-way doppler gives the most
accurate measure of the doppler frequency shift and thus
the range rate from the tracking station to the spacecraft.

For 1-way and 3-way doppler, the reference signal and
received signal are derived from different atomic fre-
quency standards. Hence, these data types are less accu-
rate than 2-way doppler. Furthermore, for 1-way doppler,
the signal transmitted from the spacecraft is currently
derived from a crystal oscillator. Because of the large
drift in frequency of this type of oscillator, 1-way doppler
is very inaccurate and is rarely used in the determination
of accurate spacecraft trajectories.

For fg/fr =1, that is, for a spacecraft range-rate of
zero, the values of f,, f., and f; are 10° Hz for L-band
and L-S band operation and 10¢ Hz for S-band opera-
tion. These biases are included so that the frequency f
will remain positive for negative spacecraft range rates

(fe/fr > 1).

For the existing S-band doppler system, the transmitted
frequency is 96 times the transmitter reference oscillator
frequency. The spacecraft transponder multiplies the
frequency of the received signal by 240/221 before re-
transmitting. The reference oscillator frequency is approx-
imately 22 MHz and hence the frequency of the signal
received at the tracking station on earth is about 2300 MHz
plus the effect of the doppler frequency shift. For 1-way
doppler, the frequency of the signal transmitted by the
spacecraft is also about 2300 MHz. For 1-way, 2-way, or
3-way doppler, the frequency of the reference signal at the
receiving station is 96 (240/221) times the receiver refer-
ence oscillator frequency plus the 1-MHz bias. For 2-way
doppler, of course, the receiver reference oscillator is the
transmitter reference oscillator.

Noting the S-band values for C,, C;, C,, and C;, one
can see that the expressions for f, and f; are identical for
S-band operation. The only differences are that two phys-
ically different atomic frequency standards are used for
3-way doppler and that the frequency shifts are based
upon different light paths.

Equations (274-276) for f may be written as

fi= Cy — Cyfsye + szs/o( - %) (278)
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fo=Cs[fq(ts) — fo(t)] +C. + CSfQ(tl)(l B %)

(279)
fo = Cy — Cef(8) + Cefy (tl)( - ’;—) (280)

Part or all of the constant part of each expression for f is
designated as fyas:

Fiias = C1 = Cofn, (281)
fzbias = C3 [f(l (t3) - fq (tl)] + C4 (282)
fabias = C1 — Cofo (t,) (283)
Hence,
= _fe
fl flhias szS/O’ ( fT)
— C; [Afr, + fr, (b2 — &) + fr, (82 — £0)?]

(284)
fo = fapias = Cofa(t1) (1 - ';—’;) (285)
f3 - f3bias = C5f‘1 (tl) (1 - %) (286)

The signal with frequency f is input to an electronic
counter whose register is incremented by 1 each time the
magnitude of the signal changes from minus to plus. A
total of N cycles are counted during the count time T..
The doppler observable F which the data editing program
passes on to the orbit determination program is:

N
F = Tc hand fbias (287)

21In addition to the integer cycle count, the time from the start of
the count interval to the first positive zero crossing is observed.
Multiplying this time by N cycles per T. seconds gives an estimate
of the fraction of one cycle not counted at the beginning of T..
One minus this quantity for the next observable is the fraction
of one cycle not counted at the end of T.. Adding these two frac-
tions of 1 cycle to the integer cycle count gives N used in
Eq. (287).
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where foias is computed from Eq. (281), (282), or (283).
Since N is the integral of f over the count time T,

1 ts,, (ST)+(1/2) T,
F= ”ff (f = fotas) dts (ST)
¢ Jt

5 (ST)=(1/2) T

(288)

where

t;(ST) = station time (ST) at receiving station, de-
rived from station atomic frequency stan-
dard

ts,, (ST) = epoch at midpoint of count interval T,

Equations (284), (285), and (286) for f — fyias are sub-
stituted into Eq. (288). For 1-way doppler, the variations
in fy0 and the second term of Eq. (284) over the count
interval are ignored. In each of these three equations, the
quantity [1 — (fs/fr)] is expanded in a Taylor series, with
the reception time #; (ST) minus the epoch ¢;, (ST) as
the argument. The coefficients of each Taylor series are
the derivatives of [1 — (fz/fr)] with respect to t,(ST),
evaluated along the light path with reception time
ts,, (ST). A term-by-term integration of each of these equa-
tions gives the desired expressions for the computation
of l-way doppler (F1), 2-way doppler (F2), and 3-way
doppler (F3).

In carrying out the integrations, the odd derivatives of
[1 — (fe/fr)] with respect to t; (ST) vanish, and the
fourth and higher even derivatives are ignored. The
resulting expressions are

F1 = Cifsyo (1 = §—)

— G, [Afr, + fr, (2 — o) + fr, (82 — 10)*]

(289)

F2= Cfole)(1- 22 (200)

F3 = Cif, (£) (1 - %) (291)
where

(-5 =0-%)+au(-%) o

The quantities [1 — (fa/fr)], [1 — (fa/f)]", and % are

evaluated along the light path whose reception time at
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the receiving station, ¢, (ST), is the midpoint ¢, (ST) of
the count interval T, (station time). The quantity
[1— (fe/fr)] " is the second derivative of [1 — (fz/fr)]
with respect to £,(ST). The first term that has been
truncated in Eq. (292) is (1/1,920) (T%) [1 — (fa/fr)]*
where iv indicates the fourth derivative with respect to
13 (ST). For 1-way doppler, fs,0 and the second term of
Eq. (289) are evaluated with the spacecraft transmission
time ¢, for the above-mentioned light path.

For 2-way or 3-way doppler, the definition of fz/fr is

fe_ _dn  dt,(ST) _ dt,(ST)
fr  dt;(ST) ~ dn  dt,(ST)

(293)

where

dn = infinitesimal number of cycles transmitted
at time #,. The dn cycles travel at constant
phase from the transmitter to the receiver
and are received at time £,. The propagation
speed is the phase velocity, which is greater
than c in the presence of charged particles.

dt, (ST) = infinitesimal period (of station time ST) for
transmission of dn cycles from transmitting
station at time ;.

dt; (ST) = infinitesimal period (of station time ST) for

reception of dn cycles at receiving station
at time ;.

Equation (293) may be written as

dST \ dUTC (dr
fR _ dUTC dT dt dtl dt2

7;‘< dsT > dUTC (dr) ds, dt;

(294)

dUTC dr dt

where

dt,, di,, dt; = ephemeris time (ET) value of transmis-
sion interval [dt, (ST)], reflection interval
at the spacecraft, and reception interval

[dis (ST)].

The ratios dt,/dt, and dt,/d¢t; will be obtained by dif-
ferentiation of the light time equations for the up and
down legs of the light path. The factors (dr/dft) at t,
and ¢; transform df, and df; from ephemeris time to
proper time 7** obtained from imaginary ideal atomic

22This time scale was defined in Section II after Eq. (58).
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clocks at the transmitting and receiving stations; they are
computed from Eq. (58) using the Newtonian potential
at each tracking station and the heliocentric velocity of
each tracking station.

The factor dUTC/d+ converts the transmission and
reception intervals from seconds of atomic time + to sec-
onds of UTC atomic time. These two atomic time scales
differ only in the length of the second (the number of
cycles defined equal to 1 s).

The factors dST/dUTC at ¢, and ¢; convert the trans-
mission and reception intervals from UTC seconds ob-
tained from ideal atomic clocks to seconds of station time
ST obtained from the actual atomic clocks at the trans-
mitting and receiving stations (the same station and clock
for 2-way doppler). The transformation from UTC to ST
at each tracking station is specified by Eq. (94), repeated
here:

UTC — ST =a + bt + ct? (295)

where a, b, and ¢ are specified by time block and £ is in
seconds past the start of the time block. Let the coeffi-
cients of Eq. (295) which apply for the receiving station
at ¢, and for the transmitting station at ¢; be denoted by
subscripts R and T respectively. Also, define F by:

dsT
(7o7c),

dST
(dUTC>3

Then, since dST/dUTC is extremely close to unity,

1+F= (296)

F = by (t3) — by (£,) + 2tsCr (ts) — 2ticr (t,)  (297)
where the transmission and reception times ¢; and ¢, are
expressed as seconds past the start of the time blocks for

a, b, and ¢ used at ¢, and ¢;, respectively. Also, define
F R,/ FE. T by

()

Fy_\at), a, dr,

FT o (dT) dtz dt3
3

(298)

dt

Then, substituting Eqs. (296) and (298) into Eq. (294)

gives
(- )-ren(o- 89 -
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(299)

The effect on 2-way doppler of the variation in F dur-
ing the count interval T is about 10-° m/s, which is com-
pletely negligible. The corresponding effect on 3-way
doppler is about 10-5 m/s, which is the desired accuracy
for computed doppler observables. However, the error
in 3-way doppler due to the unknown difference in fre-
quency of the two atomic frequency standards (Af/f =<
2 X 10-**) is a few mm/s, which probably cannot be
reduced to the 10-°-m/s level by estimating the b and ¢
coefficients of UTC — ST for the transmitting and receiv-
ing stations. Thus, the variation in F during the count
interval T, is ignored and

(1—%)”:(1 +F)<1— %) (300)

Substituting Eqs. (299) and (300) into Eq. (292) gives

(-8 o[- (-8

(301)

where

Fe\'_(y_Fs) T3() Fa)"
(-5) ~(-#)rai(-5)

Substitution of Egs. (301) and (302) into Egs. (290) and
(291) gives 2-way and 3-way doppler as a function of
[1 — (Fe/Fr)], [1 — (Fr/Fr)]"", and F.

(302)

For 1-way doppler, the definition of fz/fr is

fo __dn__ dt,(UTC) _ dt,(UTC)

fo o d(ST) ' dn dt, (5T) (303)

since fg,¢ is referenced to an imaginary UTC atomic clock
on board the spacecraft. This equation may be written as

dUTC (.‘_11
.fi _ dr dt)z .CE?_
fo 7 ST\ dUIC [dz\ dt, 009
dUTC/, dr \dt),
As in Eq. (296), define F; by
1
(0r0).
Then,
F1 ~ b}; (ts) =+ 2t303, (ta) (306)
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where ¢; is expressed as seconds past the start of the time
block for @, b, and ¢ used at t,. Also, define Fg/Fr for

1-way doppler by
(d'r
F R dt >2 dtz

dt,

Fp (dr
dt)g

Substituting Eqgs. (305) and (307) into Eq. (304) gives
Egs. (299-302) with F replaced by F, and Fy/F, defined
by Eq. (307).

(307)

Substituting Eq. (301) into Egs. (289),%% (290), and (291)
gives the final expressions for the computation of 1-way
doppler (F1), 2-way doppler (F2), and 3-way doppler (F3).
Each of these expressions contains an additive correc-
tion A, which accounts for the effects of the troposphere,
the ionosphere, and the motion of the tracking point on
the transmitting and receiving antennas during T.. The
computation of A is described in Section XII. The expres-
sions for F1, F2, and F3 are

F1 = Cufs/o {(1 ~ %)— F, [1 - (1 - %)] + A}

— Cs [Afry + fr, (B2 — o) + fr, (£ — )] (308)

F2 = Cif, (8 {(1 . gi;-) —F [1 . (1 — %)] + A}

F3 = Cdf, (t2) {(1 . %) - F[l - (1 ~ %’i)] + A}

(310)

where [1 — (Fr/F;)]* is given by Eq. (302) in terms of
[1— (Fg/F7)] and its second derivative with respect to
t:(ST), [1 — (Fg/Fr)] ", evaluated along the light path
whose reception time at the receiving station, £, (ST), is

23With F replaced by F..
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the midpoint ¢, (ST) of the count interval T.. Expres-
sions for these quantities are derived in Sections VIII-C
and -D respectively, starting from Eq. (298) for Fy/Fy for
2-way and 3-way doppler and Eq. (307) for 1-way dop-
pler. The quantities fs/0, F, and F; are computed from
Egs. (277), (297), and (306), respectively. The quantities
[1 el (FR/FT)], [1 - (FR/FT)]“, F, F1, f,g/g, tz, tl, and A
are evaluated with quantities obtained from the light time
solution for the above-mentioned light path (see Sec-
tion VI).

Equations (308), (309), and (310) are used to compute
l-way, 2-way, and 3-way doppler using either the L-band,
L-S band, or S-band values of the coefficients C,, C,, and
C;. In the I-S band configuration, the so-called 2-way
doppler observable is actually 3-way doppler (from the
electronics point of view) obtained using the same track-
ing station as the transmitter and the receiver. This data
type is computed from the 3-way formula, Eq. (310).

Another data type not previously mentioned is coherent
3-way doppler, which is essentially 2-way doppler ob-
tained from two different tracking stations. The two sta-
tions are only a few kilometers apart and the reference
frequency f,(¢;) is beamed from the transmitter to the
receiver via microwave link. Coherent 3-way doppler is
computed from the 2-way formula, Eq. (309).

The term in Eq. (308) containing F, and the term in
Eq. (309) containing F are not included in the current
DPODP formulation. The latter will be added at the
earliest convenience, and the former will be added when
fso is derived from an atomic frequency standard on
board the spacecraft instead of the currently used crystal
oscillator.

Because of truncation of the fourth and higher even
derivatives of [1 — (Fg/Fy)] in Eq. (302), the doppler
observables are limited to count times as low as 1-10 s
when the spacecraft is near a planet and no more than
roughly 1,000 s in heliocentric cruise. However, larger
count times may be used if the subinterval doppler for-
mulation is utilized. With this method, the count time T
is divided into m subintervals of length T./m. For each
subinterval, a light time solution is obtained for the light
path with reception time #; (ST) equal to the midpoint
of the subinterval, and a doppler observable F (1-way,
2-way, or 3-way doppler) is computed using T./m in
place of T, in Eq. (302).
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Let the observable computed for subinterval i be de-
noted as F;. Then, the observable for the overall count
interval T, is given by

(311)

This follows directly from Eq. (287).

Predicted values of the number of cycles N which a
station will observe in a given count interval T, are com-
puted from

N = (F + foias) T (312)

where F =F1, F2, or F3 and f,,,,5 is the corresponding bias
frequency from Eq. (281), (282), or (283). Equation (312)
follows directly from Eq. (287).

C. Doppler Frequency Shift

The expression for [1 — (Fr/Fr)] used to compute
2-way and 3-way doppler and also the expression used to
compute 1-way doppler are derived in this section. The
definitions of Fr/Fr are Eq. (298) for 2-way and 3-way
doppler and Eq. (307) for 1-way doppler, evaluated along
the light path whose reception time at the receiving sta-
tion, ¢; (ST), is the midpoint of the count interval T,. The
expressions for [1 — (Fz/F;)] are obtained as expansions
in powers of 1/c. In order to obtain the desired accuracy
of 10-% m/s for computed doppler, all terms to order 1/c*
are retained.

The terms dt,/dt, and dt,/dt; are obtained by differ-
entiation of the light time equations for the up and down
legs of the light path. The light time equation for a given
leg of the light path is Eq. (88) or (203). For the up and
down legs, it is given by

oy T (1 + Y) Mg O ol N o
hboh="Ct % I T, — T (313)
and
o, T (It y)ps Ty + 73 + 72
b — 1l = - + po In PR —— (314)
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Solution of these equations (see Section VI) gives the
following quantities:

t1, 5, ts = ephemeris time (ET) values of transmission
time at tracking station on earth, reflection
time at spacecraft (or transmission time for
1-way doppler), and reception time at track-
ing station on earth, respectively. The station
time (ST) value of ¢; is the midpoint of the
count interval T,.

T1, ¥, I's = heliocentric position vectors of transmitting
station on earth at t;, spacecraft at #., and
receiving station on earth at ¢, respectively,
with rectangular components referred to the
mean earth equator and equinox of 1950.0.

T;, T;, T; = heliocentric velocity, acceleration, and jerk
vectors of participant i at its epoch of par-
ticipation t; (i = 1,2, or 3). The dots indicate
differentiation of r; with respect to ephem-
eris time.

The quantities on the right-hand sides of Egs. (313) and
(314) are

1z = [ = 11) * (rz — 1,) 1% (315)
ras = [(ts — 1) * (1, — 1) J% (316)
= (rr)k (317)
1y = (room ) (318)
15 = (15 * 1) (319)

¢ = speed of light, km/s

ug = gravitational constant of sun, km?/s?

y = solve-for free parameter of the Brans-Dicke
theory of relativity. The parameter y is related
to o, the coupling constant of the scalar field,
through Eq. (41).
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Differentiation of Eq. (313) with respect to ¢, gives

dt, 1 for,  or,dt
T ?(a_tz ot, dt,
dndby | dry | ore | O db
LAty dtdt, " dn " o ot di
c 1+ 1+ 1y
dedi | dn o or di
(A y)us dt dt,  dt. o, ot dt
c? ’ 7y — 11
152
253 (320)
The derivative of Eq. (314) with respect to #; is obtained . o Or T
from Eq. (320) by replacing the subscripts 1 and 2 by M2 = oy ot 1, 2 (326)
2 and 3, respectively. The expression for dt,/dt, obtained
from Eq. (320} is unity plus terms of order 1/¢ and greater e Taa
arising from the 1/c (Newtonian) term of Eq. (313) plus ﬁ‘“ =, ¥ (327)
a term of order 1/¢® arising from the 1/¢? (relativity) term ? =
of Eq. (313).
LN Y (328)
Since terms of order greater than 1/c® are not retained ot T3
in dt,/dt, from Eq. (320), the factor dt,/dt, appearing in
the 1/¢? terms may be approximated by unity. The deriva- Ores | Ofyy T . :
tives appearing in Eq. (320) and combinations of them are T ot T ot 1 (329)

given by

@ T @)
_dr, 1
=L =k (322)
- drs I3
f3 3, =7, b (323)
Using the notation
=% —%;
T — f'j —¥;
the remaining terms are
0ryy T .
T, (324)
oy _ T,
o T 1 (325)
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Substituting these expressions into Eq. (320) and using
dt,/dt, = 1 in the 1/c® terms gives

__1_&.; +(1+7)”‘S
dat, C Tz c? 12 152
dt2 - 1 Tio 253
1———-1,
C Tz
(330)

where

_1.”1+7.’g"—';'12 ';'1+i2+;12 1'—)2
S T T — 1, Fitrat 253 (331)

The first term of Eq. (331) approaches 0 + 0 as the dis-
tance from the light path to the center of the sun ap-
proaches zero. However, because of the finite radius of
the sun (700,000 km), the limiting indeterminacy will not
occur. For a light ray grazing the surface of the sun and
rn =1, =50 AU, the sum 7, + r, — 1y, is about 65 km.
Since (ry + r;) and ry, are 100 AU, which is represented
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to 1075 km on the 16-decimal-digit IBM 7094 computer,
the 65-km difference is represented to 7 decimal digits.

For any case where the light path grazes the surface of
the sun and #; + r; = r1,, the contribution to the space-
craft range rate from the first term of Eq. (331) is a
maximum of about 0.5 m/s (for a spacecraft velocity of
100 km/s). Since the denomination of this term is repre-
sented to at least 7 decimal digits, the contribution of
0.5 m/s is accurate to at least 10-" m/s, which is smaller
than the desired accuracy of 10 m/s for computed dop-
pler. Thus, the numerical difficulties associated with the
first term of Eq. (331) are not significant.

Substituting Eq. (332) into the reciprocal of the denomi-
nator of Eq. (330) and expanding gives

-2y e (2)
C Ti2 [+

P\, [P}’ 12
+(c)+(0) 253
(334)

Multiplying by the numerator of Eq. (330) and retaining
terms to order 1/c® gives

Let at _ 1 Fiz  Tupo
s T2 dt, [ c?
pua =2k (32
12
1 . ., 1-2

and, for the down leg, + P (L + ) ps€re — F1Pe] 253 (335)
as = ~22 - (333)
Pas = T Multiplying dt,/dt, by dt./dt; gives
dt, dt 1, . 1 ... . o . .
Eti * E’f =1- 'c" (7'12 + 723) + Eg‘ (1'121'23 — T2z — fzspzs)

+ ;; [(1 + Y) Ps (512 + €23) + P1af0s (Pu + st) — F12Ppfe — rzapéa] (336)

From Eq. (58), the quantities (dr/dt),, (dr/dt)., and
(dr/dt); are given by

dr . 2 $\2 1% .
(@), <[ -)]" =

(337)

where

$; = Newtonian potential at participant 1 at its epoch
of participation ¢;

$; = heliocentric velocity of participant 1 at its epoch
of participation #;

The potential ¢; is given by

— B
& Z Tij

i

(338)
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where the summation over § includes the sun, all of the
planets, and the moon, and r;; is the coordinate distance
from the participant i to the center of the body j. The
velocity §; is obtained from

8 =Fox; (339)

Since terms of order greater than 1/¢® are not retained,
Eq. (337) may be approximated by

(@), -&-3:¢) eo
For 2-way or 3-way doppler,
(&)
e U R SR ) T
(#).
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where terms of order 1/c* have been ignored. Similarly, for 1-way doppler,

().

(%),

1 .
=145 |-t 5G|

(342)

Substituting Eqgs. (341) and (336) into Eq. (298) and retaining all terms to order 1/¢® gives the desired expression for

[1— (Fg/Fy)] for 2-way or 3-way doppler:

F 1. . 17, , . . . . 1. .
(1 - 'PTIE> = - ("'12 + 1'23) + ey [1‘121012 + TozP2sz — Ti2lp3 + (411 - 4)3) + = (6‘% - 3%)]
T c c 2

+ 55 {lepfz + 153P%s — fiofas (plz + Pza)

= (s ) (= 90+ 5 630 | (L ) e+ )

(343)

This quantity is used in Eq. (302), which is substituted into Eq. (309) or (310) to compute 2-way or 3-way doppler. Simi-
larly, substituting Eq. (342) and dt,/dt, obtained from Eq. (335) into Eq. (307) gives the expression for [1 — (Fr/Fr)]

for 1-way doppler:

F 1. 17, . 1, .
<1"ﬁ)“:’;(723)+'c§[723p23+(¢2‘_¢3)+‘2-(3:23"S§)]

14, ., . 1. .
+ ?3 {1‘231033 — T3 [(?52 - 953) + E (s§ - 35)] - (1 +y) Il-sfza}

Equation (344) is used in the computation of 1-way dop-
pler from Egs. (302) and (308). Note that setting all up-leg
factors equal to zero in Eq. (343) and changing ¢, and §,
to ¢ and 3, gives Eq. (344).

For 2-way or 3-way doppler, ¢, is very nearly equal
to ¢s. The contribution to (¢; — ¢s) from the other planets
and from the moon affects the observable by less than
10-* m/s and hence can be ignored. Thus, only the poten-
tial from the sun and from the earth needs to be con-
sidered, and ¢, and ¢s are given accordingly by

Ly}

¢'1 - 1,1 + rzla (345)
Hs Fadi]

s = Py + - (346)

where 77 and ¥ are the geocentric radii of the transmit-
ting and receiving stations, respectively. The second terms
of Eqs. (345) and (346) are required for the computation
of 3-way doppler but cancel in (¢, —¢s) used for 2-way
doppler.
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(344)

For l-way doppler, ¢, and ¢, are computed from
Eq. (338) as indicated after that equation.

D. Second Derivative of Doppler Frequency Shifi

The computation of doppler observables requires an
expression for [1 — (Fg/Fy)] *, which is the second deriva-
tive of [1 — (Fg/Fyr)] with respect to the reception time
t; (ST), evaluated along the light path whose reception
time is the midpoint of the count interval T.. The expres-
sion for [1— (Fg/Fr)] " for 2-way and 3-way doppler
and also the expression for 1-way doppler are derived in
this section. They are obtained by differentiation of the
corresponding expressions for [1 — (Fg/Fr)] obtained
from Section VIII-C.

In order to limit the doppler truncation error (due to
ignoring the fourth and higher even derivatives of the
frequency shift in Eq. 302) to 10-° m/s or less, count times
as low as 1-10 s must be used when the spacecraft is
very near one of the celestial bodies of the solar system;
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alternatively, when the spacecraft is in heliocentric cruise,
count times as large as 1,000 s may be used.

For ecither of these situations, the 1/¢® terms of
[1 — (Fgr/Fyz)] * affect doppler observables by less than
10~ m/s. Hence, the expressions for [1 — (Fp/Fy)] " are
obtained by differentiating Eqs. (343) and (344), ignoring
the 1/¢® terms. For 2-way or 3-way doppler, the variations
in (¢ — ¢s)/c? and (§2 — §8)/2¢? over the count interval
affect the observable by less than 10-° m/s; hence these
terms are also ignored. For l-way doppler, the corre-
sponding terms and their variations are quite large. How-
ever, they have not been included in the expression that
is differentiated because of the inaccuracy of 1-way dop-
pler obtained by using a crystal oscillator on board the
spacecraft.

In the future, when 1-way doppler derived from an
atomic frequency standard becomes available, it will be
mandatory that [1 — (Fz/Fr)]" " include the derivatives
of (¢ — ¢s)/c® and (§3 — §%)/2¢% For 2-way or 3-way
doppler, [1 — Fr/F;]" " is obtained from

F 1, .
(1 — F—:> ~ ‘c‘(rlz + 7'23)

1 ° 3 a o« a A
+ & (f12P12 + T2sP2s — T12T2s) (347)

For 1-way doppler, the corresponding expression is

F 1. ...
(1 - Ff") ~ _C— (1”23) "I"' E; (1'23}923) (348)

The terms in Eqgs. (347) and (348) are functions of the
heliocentric position and velocity vectors of the transmit-
ter, spacecraft, and receiver at their epochs of participa-
tion. Since the time unit for the velocity, acceleration, and
jerk vectors of each participant is ephemeris time (ET),
the derivatives of [1 — (Fg/Fr)], which are obtained
naturally, are the first and second derivatives with respect
to t; (ET). Given these quantities, the second derivative
with respect to £;(ST) is

aorr ()= [mem (- 5)][
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The second term of Eq. (349) affects doppler observables
by less than 10-*® m/s and hence can be ignored. The
second derivative of [1 — (F/Fr)] with respect to ¢; (ET)
contains 1/¢ and 1/¢* terms and hence is accurate to
about 8 figures. The multiplicative factor in the first term
of Eq. (349) is unity to about this many figures; hence, it
may be ignored. Thus, [1 — (Fz/Fr)] ' is computed from

_Ey__ & ( Fa
( FT> © dt; (ST)? F,,)
d Fr

In terms of first and second derivatives of the terms of
Eq. (347) with respect to ¢; (ET), denoted as £,

Fr\ _ 1 d%w . .
(1_ FT> ¢ dg [l+ c (plz—r23):|

1 d*, 1, .
+— 22 [1‘{"(‘;(7)23—1‘12)]

c dt

'l' dzp.,m ;12 "1' d2p23 7.'23

¢z di ¢ dt}

_& dr.l'.! di’]Z

¢\ dt, dt,

d';'za di)za df12 dfzs

&, dt ‘dz) (351)

which applies for 2-way or 3-way doppler. Similarly, from
Eq. (348),

(-3

c di c ¢ dt; Tas
2 dfzg dp'23
+ ct dt, dt, (352)

which applies for 1-way doppler.

The quantities 75, 23, P12, and P,; are functions of
t; (ET), ¢, (ET), and ¢ (ET) which will be denoted as
11, t,, and t;, respectively, in the remainder of this section.

58T a0 1)

3. (BT 7. ) | a5 (5T (349)
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In order to obtain derivatives of these quantities with
respect to %, the following subpartial derivatives are
required:

dt, . Ty

dt; 1-= (353)
dt, 1. )

jji— = 1 (1'12 + 7'23) (354)

The terms above are derived from Egs. (313) and (314),
ignoring the 1/c® relativity terms.

The first and second derivatives of 7., fzs, P12, and Pas
with respect to #; are functions of the following partial
derivatives, whose sums are denoted as:

o= GG RN
= - %';: R
pemr e Bra -G 20 ow
O e s PR

where the previously defined quantities #,, and p,. have
been included for completeness. Equation (358) follows
from Egs. (332), (333), (325), and (328). Substituting
Eq. (358) into the first form of Eq. (359), changing the
order of differentiation in the second mixed partial deriva-
tive, and substituting Eq. (355) gives the second form of
Eq. (359). Similarly, the second form of Eq. (360) follows
from the second form of Eq. (359) and from Eq. (356).

Using (353) and (354), one obtains

diy _ O dty | Ohedh
dt, — ot, dt, ot dt,

& (st i) |
(361)

_ O far) | Bl
~atz(l >+8t [1
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Substituting Eqs. (356) and (359) gives

dr 1
ary, _ 7'12 + =

dt, (7127912 — Fasf1z) (362)
Similarly,
di' 3 .5 s as
Ei = a3 + (7'231)23) (363)

The following derivatives are required to order 1/¢°:

dpsz _ ..
=P (364)
s _ ..
d’ZS = Pas (365)

Differentiating Eq. (362) with respect to #s, using Eqgs.
(353) and (354), gives

d*fs _ o' Tas 071
daz ot (1 )+ ot, [1

1 . aco (13 (14
+ F (7'12 Pz + T12P12 —

1, .
‘E" (1'12 + "'23)]

7"23 .71;2 - 'fzsﬁz) (366)
Since 1/¢? terms are ignored, the 1/c terms were differ-
entiated by inspection using Egs. (353) and (354) equal
to unity. Substituting Egs. (357) and (360) gives

dazi d*iyy

g =T+ — [2 (f12Pre = T25F12) + 12 (Pr2 — Tos)]
(367)
Similarly,
dZ' Lhid 1 9 sed 38 @o
d::3 =Tyt c (225 P2s + TasPas) (368)
3
and, to order 1/c°,
P2 ...
S = Pl (369)
&Pz _ ..
dfg > = Pes (370)
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Substituting Egs. (362-365) and Egs. (367-370) into Egs. (351) and (352) gives, for 2-way and 3-way doppler,

(1 - ﬁ) - —5(712 + 728)+ pE [7i2 (P12 — 3f2s) + T2s (Pos — F12) T 3(Fra Pr2 + Faa Poa + FroPre + FasPas — Taales)]

(371)
and for 1-way doppler,
(1= F2) = 5 () + 5 Db+ 3T + s @72)
The quantities in Egs. (371) and (372) are defined in Eqgs. (355-360). They are computed from:

e =22y e (373)

i T Ty + 31'-1:1; Fiz — 3Fpthe ;: g (375)

_ 12 oo

= I ot + i-lr-1 :’-12 ~ Paafiz ;: g (377)

5 = rip°¥y + 28, F, + 1"; :’u — 2f15P12 — Prorz é :: g (378)

where

Yi; =% —I;

r—> 0§ T

Equations (373) and (376) are Eqs. (326), (329), (332), and (333). The remaining equations follow by successive differ-

entiation according to Egs. (356), (357), (359), and (360).

iX. Range Observables

This section gives the formulation for computation of
range observables.

A. Introduction

There are several different range tracking systems.
However, all of them are conceptually the same. For each
system, an electromagnetic signal is transmitted from a
tracking station on earth at time ¢,, received and retrans-
mitted by the spacecraft at time £,, and received by the
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same tracking station at time £;. The mathematical repre-
sentation of the range observable p is

P = (ta - tl)ST F, mOdulO M

where

(ts — t1)sr = round-trip time of the signal in seconds of
station time ST (derived from the atomic
frequency standard at the tracking station)
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F = conversion factor from seconds of station
time ST to the units of the range observ-
able

M = modulo number. The largest integer mul-
tiple of M which is less than (t; — t.)sr F
is removed from this quantity, leaving the
observable p, which is less than M. This
operation on a number n will be referred
to as “modding” n by M.

The conversion factor F and modulo number M for each
ranging system are given in Section IX-C.

The first step in obtaining the computed value of a
range observable is to solve the light time equations for
the down and up legs of the light path, whose reception
time £, (ST) is the observation time. This light time solu-
tion, described in Section VI, gives the quantities used
to compute a precision value of the round-trip light time
in seconds of ephemeris time. This precision value is con-
verted to seconds of station time by using the time trans-

={_1'1_2+(1+‘y),u.,g]n(1‘1+1'2+1’12>+

c c? L+ 1 — e
— (ET — Al),, + (ET — Al),,
— 8(ET — Al),, + 8(ET — Al),,
— (A1 = UTC),, + (A1 — UTC),,
— (UTC — ST), + (UTC — ST),

+ R, + Aup (ts) + Agp (£5) + Asp (£s) +

formations of Sections II and III. Corrections are added
to account for the effects of the troposphere, the iono-
sphere, and the offset of the tracking point on the antenna
from the earth-fixed “station location” on the antenna
mount. In addition, the estimated value of a range bias
is added. This sum for the round-trip station time is multi-
plied by F and modded by M, as indicated above. The
expression for computing the range observable p is given
in Section IX-B. The computation of the troposphere,
ionosphere, and antenna corrections is described in Sec-
tion XII.

Section XI contains the formulation for computation
of doppler observables from differenced range observ-
ables divided by the count time T. The required changes
to the range observable formulation of this section, which
are minor, are described in Section XI.

B. Formulation

The range observable p, obtained from any of the track-
ing systems described in Section IX-C, is computed from:

1&_{_ (1+'y)’bsln<f2+fs+rza>

03 7'2 + 1'3 - 7'23

103%¢

Equation (379) is evaluated with quantities obtained
from the light time solution for the observable, listed
after Eq. (314). The epochs of participation ¢, £., and %,
are available in the ET, Al, UTC, UTI, and ST time
scales. The quantities 115, 733, 71, 72, and 7; are computed
from Egs. (315-319). The definitions of ¢, ug, and y fol-
low Eq. (319). The time transformations (ET — Al),
(A1 — UTC), and (UTC — ST) are given by Egs. (93),
(95), and (94), respectively. The quantity § (ET — Al), to
be discussed below, represents additional relativity terms
of (ET — Al) not contained in Eq. (93), which is used
in the general time transformation subroutine of the
DPODP.

Each of the four time transformations of Eq. (379) is
evaluated with the transmission time ¢, and with the re-
ception time #;, expressed in one of the two time scales
related by the transformation. Either time scale may be

60

Aup (t) + Arp (t:) + App (tl)}

F,  moduloM (3879)

used, but the same time scale must be used at both ¢
and ¢;. The remaining terms of Eq. (379) are

R; = estimated constant range bias (specified by
time block for each station)

Aip (j) = range correction in meters due to i = A (an-
tenna offset), T (troposphere), or I (iono-
sphere) for down leg (j = t;) or for up leg
(G=1t)

The sum of the first two terms of Eq. (379) is the right-
hand side of the light time equation for the up leg of the
light path (Eq. 313). Similarly, the sum of terms 3 and 4
is the right-hand side of the light time equation for the
down leg of the light path (Eq. 314). The sum of these
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four terms is an accurate expression for the round-trip
ephemeris time. The largest error in the computation of
this quantity arises from truncation of the epochs of par-
ticipation beyond a precision®* of 107 s.

The maximum conceivable heliocentric velocity of the
spacecraft is 1,000 km/s. For this velocity, the maximum
error in the computed round-trip ephemeris time due to
truncation of the epochs of participation is 1.4 X 10-° s.
The corresponding error in range is 0.4 m round trip or
0.2 m one way. The typical errors are at least one order
of magnitude lower than these figures.

An alternative method for obtaining the round-trip
ephemeris time would be to subtract the ET values of the
epochs of participation ¢, and ¢,. However, this difference
could be in error by as much as 2 X 10-7 s. The corre-
sponding range error would be 60 m round trip or 30 m
one way, which would be unacceptable.

The time transformations of Eq. (379) convert the pre-
cision round-trip light time from an interval of ephemeris
time to an interval of station time ST. The remaining
terms of Eq. (379) account for the effects of the tropo-
sphere and the ionosphere, the offset of the tracking point
on the antenna from the earth-fixed “station location,”
and a constant range bias R, whose value may be esti-
mated.

Section XI contains the differenced-range doppler for-
mulation, ie., the formulation for computing doppler
observables from differenced range observables divided
by the count time. The required analytical change to the
range observable formulation consists of a more accurate
expression for the (ET — Al) time transformation used
to transform the round-trip light time from ephemeris
time to station time. The required expression is Eq. (65),
which is derived in Appendix B.

The (ET — Al) time transformations in Eq. (379) are
evaluated with the general time transformation subrou-
tine of the DPODP. This subroutine computes (ET — Al)
from Eq. (93), which consists of the first three terms of
Eq. (65). Currently, 8§ (ET — Al) in Eq. (379) consists
only of term 4 of Eq. (65). The following listing gives

2¢0n the 16-decimal digit IBM 7094 computer, time is represented
as seconds past January 1, 1950, Ob to a precision of 0.6 X 10-7 s
from 1967 to 1984,
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the maximum contributions to 1-way range (p/2) from
each of terms 3-10 of Eq. (65):

Contribution to 1-way range
(m/AU of 1-way range)

50

22
04
0.007
1
0.02
0.6
0.01

Term No.

O WWO -1 Uk W

=

The observables obtained from the Tau or Mu ranging
systems described in Section IX-C have a potential accu-
racy of about 1 m or slightly better. In order to obtain
the maximum benefits from these accurate data types, the
computed range observables should have an accuracy of
about 0.1 m. For the forthcoming Grand Tour missions
to the outer planets, the range to the spacecraft will be
several tens of AUs, and all of the relativity terms of
Eq. (65) will contribute more than 0.1 m to it (see the
listing above). Therefore, terms 5 through 10 of Eq. (65)
should be added to § (ET — Al). There is a small monthly
variation in (ET — A1), which is not included in Eq. (65)
since it does not significantly affect differenced-range
doppler. However, it does affect 1-way range by about
0.05 m/AU. Hence, an expression for computing this term
should be derived and added to & (ET — Al).

The second and fourth terms of Eq. (379) are the rela-
tivistic corrections to the light time for the up and down
legs of the light path. These terms become very large
when the spacecraft approaches superior conjunction and
the minimum distance from the up and down legs of the
light path to the surface of the sun becomes very small.
For this situation with the light ray grazing the sun of
radius R and with the earth and the spacecraft at the
same distance r from the center of the sun, the relativistic
correction to the light time for each leg of the light path
is given approximately by

e i)

With y =1, its general relativity value, r =1AU =
150 X 10¢ km, and R = 0.7 X 10° km, this 1-way light
time correction amounts to 36 km/c. The round-trip range
observable is affected by 72 km/c or 240 us. This is the
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only really large effect of general relativity on earth-
based tracking data. Fitting to tracking data obtained
from a spacecraft which is in the vicinity of superior con-
junction provides this so-called fourth check of general
relativity. Presuming that the observed minus computed
range residuals will be vastly smaller when the second
and fourth terms of Eq. (379) are turned on, fitting to
these tracking data should provide an estimate of the
parameter y and hence, from Eq. (42), the coupling
constant » of the scalar field of the Brans-Dicke theory
of gravitation.

C. Ranging Systems

To date, range tracking data have been obtained from
five different range tracking systems: the Air Force Eastern
Test Range (AFETR) pulse-radar ranging system, the
Mark 1 and Mark 1A lunar ranging systems, and the
Tau and Mu planetary ranging systems. The latter four
systems have operated at tracking stations of the Deep
Space Network. The lunar ranging systems are used for
lunar missions and during the early phases of planetary
missions. The planetary ranging systems are used for all
deep space applications. The Mark 1 system has been
replaced by the Mark 1A system. The Mu system is the
latest research and development planetary ranging sys-
tem. Both the Tau and Mu ranging systems have a poten-
tial accuracy of a few meters and possibly as low as 1 m
or slightly better. Table 1 gives the values of the conver-
sion factor F and the modulo number M for each of these
systems, where

¢ = speed of light, km/s

fe (t.) = reference oscillator frequency at transmitting
station, cycles per second of station time ST
(derived from transmitter atomic frequency
standard), evaluated at transmission time #,

n = number of components of ranging code used
with Mu ranging system

The frequency f,(#,) is the same quantity used in the
computation of doppler observables. The number n asso-
ciated with the Mu system varies from a typical value of
10 to the maximum system capability of 18.

The units of the Mark 1 and 1A observables are referred
to as “range units,” RU. The length of 1 RU is 10%c/(2F)
meters of range from the tracking station to the spacecraft.
For the Mark 1A system, 1 RU =~ 1.04 m. Using the nomi-
nal value of f, (¢,) = 22 X 10° Hz gives approximately the
same value for the Mark 1 system. The units of the Tau
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Table 1. Conversion factors and module numbers
for ranging systems

Ranging system Conversion factor F Modulo number M
[
AFETR ‘;; None
Mark 1 _'I_;;__;_]O fq (#) 785,762,208
Mark 1A 96 X 1,496,500 785,762,208
1.00947
Tav 10° 1.0002 X 10°
64 X 2"
6 P iA X 3
Mu 10 31, () 10

and Mu observables are round-trip nanoseconds and
microseconds, respectively.

The Mark 1 and 1A range observables are modded by
approximately 800,000 km in 1-way range to the space-
craft. The corresponding figure for the Tau system is
150,000 km. Using the maximum value of n =18 and
fo (81) = 22 X 10° Hz, the Mu range observables are
modded by about 38,000 km, one way.

The AFETR range observables computed by the
DPODP are expressed in one-way kilometers and are not
modded; they are used primarily for study purposes.

For all practical purposes, all of the range tracking sys-
tems except the Mu system provide a continuous measure
of the range observable p given by Eq. (379). The Mu
system provides one range observable each time the rang-
ing system is initialized during the pass of the spacecraft
over the tracking station. Also, it provides a direct mea-
sure of the correction to all 2-way doppler observables
obtained during the pass due to charged particles of the
ionosphere and interplanetary medium.

The output from the Mu ranging system at time ¢ is
Po (t)’ given by

po(¥) = p(t) — ltﬁdt

The ranging system is initialized at some epoch %, during
the pass of the spacecraft over the tracking station. The
first term is the range observable p obtained at time ¢. The
second term is counted doppler from the epoch £, to £, It is
the 2-way doppler observable F2 of Section VIII multi-
plied by the count time T, which extends from t, to ¢, and
with the units converted from those of F2 to those of p.
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In the absence of charged particles, counted doppler is
equivalent to differenced range:%

[ﬁdt=p<t) — p(t)

0

and the output from the Mu ranging system would be

po(t) =p(t) — [p(t) — p(t)] = p (£o)

That is, the output would be constant and equal to the
range p at the initialization epoch £,. With charged par-
ticles present,

P (t)corrected =p (t) + Acp (t)

and

[ ﬁt f;dt]mreeted = [p(#) — p (ta)] — [Acp (£) — Acp (£o)]

0

where Acp (t) is the correction to p (t) due to charged par-
ticles. The effect of charged particles on counted doppler
is the negative of the correction to the corresponding
differenced range observables. Thus, when doppler ob-
servables are computed from differenced range observ-
ables, the sign of the charged particle correction to each
range observable must be changed. From the two equa-
tions above, the output of the Mu ranging system with
charged particles present is

po(8) = p(2) + Acp (£)
— [p(®) — p(£)] + [Acp () — Acp (%)]
=p (o) + 2Acp (t) — Acp (o)

The output at t =1, is

po (to) = p (o) + Acp (to)

This quantity is equal to p computed from Eq. (379), with
the reception time #; equal to the initialization epoch
to. The charged particle correction Acp (f,) is the round-
trip ionospheric correction [Asp (t) + A (8,)] F/10%¢ of
Eq. (379). The output p, (¢) for ¢ > £, is not a true range
observable with reception time t, because the charged
particle correction 2A.p () — Acp (£,) does not equal the

25However, differences can arise from sources other than charged
particles, such as from variations in the electrical path length
through the range tracking system which differ from those of the
doppler tracking system.
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correction Ap (t,) for a range observable. Thus, the out-
put from the Mu ranging system is a range observable p
corresponding to Eq. (379) only at an initialization epoch.

The output p, (£) of the Mu ranging system evaluated
at an epoch #, minus the value at an epoch %, is

po (£2) — po (ts) = 2 [Acp (t2) — Acp ()]

This quantity is an observed value of twice the charged
particle correction to the 2-way doppler observable whose
count time T, extends from ¢, to ..

‘X. Angular Observables

This section gives the formulation for computing angu-
lar observables, which are of two types: (1) directly ob-
served angles of the incoming radiation relative to the
tracking station’s earth-fixed reference coordinate system,
and (2) optical angles—topocentric right ascension « and
declination §—obtained from reduction of photographic
plates. As opposed to directly observed angles, optical
angles do not contain effects due to stellar aberration and
atmospheric refraction (to first order).

The directly observed angle pairs are: (1) hour angle
HA and declination §—most DSN stations; (2) azimuth ¢
and elevation y—AFETR stations and some DSN stations;
(3) X, Y angles—Manned Space Flight Network (MSFN
stations); and (4) X, Y” angles—MSFN stations.

The topocentric coordinate systems and unit vectors
associated with each directly observed angle pair are
described in Section X-A. The formulation for computing
the direction of the incoming radiation and each pair of
angular observables is given in Section X-B. Corrections
to the directly observed angles due to small solve-for
rotations of the earth-fixed reference coordinate system
are given in Section X-C. Partial derivatives of the angu-
lar observables with respect to the heliocentric positions
of the spacecraft and the tracking station are given in
Section X-D. These will be used in Section XIV to form
the partial derivatives of the angular observables with
respect to the solve-for parameters.

A. Coordinate Systems and Unit Veciors

The reference coordinate system at each tracking sta-
tion is rigidly fixed to the earth, and its orientation relative
to the true pole, equator, and prime meridian varies with
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the motion of the pole (see Section VII). The maximum
excursion of the earth’s axis of rotation from its mean
position is about 10 m, and since the latitudes of all track-
ing stations are low (less than 45 deg), the maximum
change in the orientation of the reference coordinate
system from its mean orientation relative to the true
pole, equator, and prime meridian is about 1 arc second.
The maximum attainable accuracy for directly observed
angles is about 0.002-0.003 deg or 7-11 arc seconds, and
thus the 1-arc second variations due to polar motion may
be neglected. Therefore, the computation of directly ob-
served angles is based upon a fixed orientation of the
reference coordinate system relative to the true pole,
equator, and prime meridian,

1. Right ascension, hour angle, and declination. Fig-
ure 5 shows a rectangular coordinate system centered
at the tracking station on earth. The x- and y-axes are
parallel to the earth’s true equator; the x-axis is toward
the true vernal equinox, and the z-axis is parallel to the
true axis of rotation of the earth, directed north.

The unit vector L is directed from the tracking station
at the reception time ¢, to the spacecraft (a free space-
craft or a station on some celestial body other than earth)
at its transmission time f,. The angles « and § are the
right ascension and declination of the spacecraft. The

(8+)) Q

Fig. 5. Right ascensien, hour angle, and declination

64

observer’s meridian contains the unit vectors P and Q and
makes an angle (¢ + \) with the vernal equinox, where

6 = true sidereal time = Greenwich hour angle of true
equinox at reception time £,

) = east longitude of tracking station, relative to true
pole

The sidereal time ¢ is computed from Eq. (269) and asso-
ciated equations, using #; (UT1) and #; (ET). The unit
vector E is normal to P and Q. The angle HA is the hour
angle of the spacecraft.

Nominal computed values of directly observed HA and
8 are based upon the geometry of Fig. 5. However, the
reference coordinate system QEP may be rotated through
the small angles ¢’ about Q, € about E, and 7" about P,
thus changing the angle HA in the QE plane and the
angle § normal to it. Corrections to the nominal com-
puted values of HA and 8 due to the solve-for rotations
¥, €, and 5’ are given in Section X-C.

The unit vectors D and A in the directions of increasing
declination and right ascension are used in computing the
partial derivatives of «, §, and HA with respect to the
estimated parameters. The vector A is normal to L and D.
The rectangular components of D and A along «x, y, and
z are

D, [ —sin 8 cosa

D=| D, |=| —sindsina (380)
| D, | L cos 8
[A,7] [[—sine

A=| A |=]| cosa (381)
LA.] L O

2. The north—east—zenith coordinate system. Figure 6
shows a rectangular coordinate system whose origin coin-
cides with the center of the earth. The x- and y-axes are
in the earth’s true equator with the x-axis directed toward
the true vernal equinox and the z-axis along the instan-
taneous axis of rotation, directed north. The unit vectors
N, E, and Z originate at the tracking station S, whose
meridian makes an angle (¢ + A) with the x-axis. The
zenith vector Z is contained in the meridian plane and
makes an angle ¢, with the true equatorial plane, where
¢, is the computed geodetic latitude. The north vector N
and east vector E are normal to Z and are directed to
the north and to the east, respectively. The angle pairs
o—y, X-Y, and X’-Y’ are referred to the rectangular NEZ
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(8+\)

Fig. 6. The north—east—zenith coordinate system

coordinate system at the tracking station. The rectangular
components of these unit vectors along %, y, and z are

TN, [ —sing,cos(d + A)

N=|N, |=| —sin¢,sin(d + 1) (382)
| N.| L COS ¢y
E,7] [ —sin(d +A)

E=|E, |= cos (6 + A) (383)
| E. | L 0
Z,7] [cos¢ycos(d + A)

Z=|2Z, |=] cos¢,sin(f + 1) (384)
| Z, | | sin ¢,

The geodetic latitude ¢, of the tracking station is com-
puted from

b9 =¢ + (¢s — ¢) (385)

where

¢ = solve-for geocentric latitude of tracking station,
referred to true pole and equator

and (¢, — ¢) is computed from

2,
(= #) = sin g cos

e%a, 2a, 1\ .
X[l-l— " —ez<r - 2>sm2¢]

(386)

where

= eccentricity of reference spheroid
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r = solve-for geocentric radius of tracking station
a. = mean equatorial radius of earth = 6,378.160 km

The eccentricity e can be computed from the flattening f,
using a nominal value of 1/298.25, as
e?=2f —f* (387)

3. Azimuth and elevation. Figure 7 shows the unit vec-
tor L in the NEZ coordinate system centered at the track-
ing station S. The angles ¢ and y are the azimuth and
elevation, respectively. The reference coordinate system
may be rotated through the small angles » about N, €
about E, and ¢ about Z. Section X-C gives corrections to

the computed values of ¢ and y as a function of the solve-
for rotations 7, €, and ¢.

The unit vectors D and A (normal to L) in the directions
of increasing y and o, respectively, are used in computing
the partial derivatives. The components of D and A along
N, E, and Z are

[ Dy [ —sinycos o

D=|D;|= —sinysine (388)
_Bz_ R COSs vy
_ZN- —'"Sinﬂ'

A=A |=]| cose (389)
LAZ N L 0

Fig. 7. Azimuth ond elevation
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Using Egs. (382-384), the rectangular components of D and X referred to the true earth equator and equinox are

"D, [siny[cososing,cos(6 + 1) + sinosin (6 + A)] + cosy cos ¢, cos (6 + A)

D= D, |=| siny[cososing¢,sin(8 + 1) — sino cos (6 + A)] + cos y cos p,sin (6 + A) (390)
_13,_ i —sin y cos o cos ¢, + cos ysin ¢,
A, [ sin osin ¢, cos (§ + 1) — cos osin (@ + A)

A= A, |= sinosin ¢,sin (§ + A) + cos ocos (§ + A) (391)
| ~z_ i —sin o cos ¢,

4. The X and Y angles for MSFN stations with 6-m (20-ft) anienna. Figure 8 shows the angles X and Y referred to the
NEZ reference coordinate system at the tracking station.

The unit vectors I}’ and A’ (normal to L) are in the directions of increasing Y and X, respectively. The components
of D' and A’ along the N, E, and Z axes are

Dyl [ cosY

D'=|Dg|=| —sinYsinX :l (392)
| D7 ] [[—sinYcosX
AT [ O

A=] Ay I=]| cosX (393)
| A2 ] [ —sinX :I

Using Eqgs. (382-384), the rectangular components of D’ and A’ referred to the true earth equator and equinox are

D;7] [ sinY [sinXsin (6 + A) — cos X cos ¢, cos (§ + A)] — cos Y sin ¢, cos (6 + \)

D' =|Dj|=| —sinY [sinX cos(f + X) + cos X cos ¢,sin (§ + A)] — cos Y sin ¢, sin (§ + A) (394)
D, | L cos Y cos ¢, — sinY cos X sin ¢,
AL —sin X cos ¢, cos (8 + 1) — cos X sin (6 + 1)

A" =] A} |=| —sinX cos ¢,sin(§ + A) + cos X cos (8 + A)] (395)
AL ] L —sin X sin ¢,

5. The X’ and Y’ angles for MSFN stations with 26-m (85-ft) antenna. Figure 9 shows the angles X” and ¥’ referred to
the NEZ reference coordinate system at the tracking station.

The unit vectors D” and A” (normal to L) are in the directions of increasing Y’ and X’, respectively. The components
of D" and A” along the N, E, and Z axes are

DY [ sinY'sinX’

D"=|Dj |= cosY’ J (396)
| D7 1 | —sinY’ cosX’
Ayl [—cosX’

ar=|a7|=| o (397)
| A7 | |—sin X':I
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The rectangular components of D” and A” referred to the true earth equator and equinox are

D

DII — D;’ —
.

-7

Ay |=

A7

A” =

B. Computation of Angular QObservables

The computation of each pair of angular observables

requires the following quantities from the light time solu-

tion (see Section VI):

13, ¥; = heliocentric position and velocity vectors of
tracking station at reception time #;, with
rectangular components referred to mean
earth equator and equinox of 1950.0

ry = heliocentric position vector of earth at re-
ception time %;, with rectangular compo-
nents referred to mean earth equator and
equinox of 1950.0

r, = heliocentric position vector of spacecraft at
transmission time £,, with rectangular com-
ponents referred to mean earth equator and
equinox of 1950.0

t; (ET),
t; (UT1) = ET and UT1 values of reception time ¢.

The true sidereal time ¢ at the reception time ¢, is com-
puted from Eq. (269) and associated equations, using
t; (UT1) and t; (ET).

1. Compuiation of unit vector L. The unit vector L
will be computed by one procedure for the directly ob-
served angles (hour angle-declination, azimuth—elevation,

Fig. 8. X and Y angles

JPL TECHNICAL REPORT 32-1527

—sin Y’ [sin X’ sin ¢, cos (0 + X) -+ cos X’ cos ¢, cos (§ + A)] — cosY’sin (4 + A)
—sin Y’ [sin X’ sin ¢, sin (8 + X) + cos X’ cos ¢, sin (6 + A)] + cos Y’ cos (§ + A) :| (398)
sinY’ (sin X’ cos ¢, — cos X’ sin ¢,)
™ cos X’ sin ¢, cos (8 -+ A) — sin X’ cos ¢, cos (6 + X)
cos X’ sin ¢, sin (6 + 1) — sin X" cos ¢, sin (6 + A) ] (399)
—cos X’ cos ¢, — sin X" sin ¢,

X-Y, and X’-Y’) and will be computed by a second pro-
cedure for optical right ascension-declination obtained
from the reduction of photographic plates.

a. Directly observed angles. The unit vector L is
directed from the heliocentric position of the tracking
station at the reception time £; to the heliocentric position
of the spacecraft (a free spacecraft or a station on some
celestial body other than the earth) at its transmission
time t,. This vector, with rectangular components referred
to the mean earth equator and equinox of 1950.0, is de-
noted as Ls,. It is computed from

Lyo = — 22 (400)
Tag
where
Ty = Y3 — Iy (401)
Ty — (r23 °® 1'23)% (402)
z
'}
N
Xl
v (o
L m
e

DII

Fig. 9. X and Y’ angles
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The unit vector Ls, is directed from the station to the
spacecraft in the heliocentric space-time frame of refer-
ence. In the observer’s topocentric space-time frame of
reference, the direction to the spacecraft is Ls, + AL,
where AL;, can be derived from the Lorentz transforma-
tion of special relativity. The following first-order expres-
sion for AL,, is the same as that due to the stellar
aberration of light, the change in the direction of incom-
ing light due to the heliocentric motion of the tracking
station:

1., .
AL = - [fs — (¥ * Liso) Liso] (403)

where

= speed of light

The unit vector L with rectangular components referred
to the true equator and equinox of the reception time ; is
denoted as L. It is given by

Lirue = N (8:) A (t5) (Liso + ALso) (404)

where

A (t;) = precession matrix, transforming rectangular
components of a vector referred to the mean
earth equator and equinox of 1950.0 to com-
ponents referred to the mean earth equator
and equinox of #;.

N (t;) = nutation matrix, transforming rectangular com-
ponents of a vector referred to the mean earth
equator and equinox of ¢; to components re-
ferred to the true earth equator and equinox
of t,.

The A and N matrices are a function of ephemeris time
and hence are computed from ¢, (ET).

The direction Ly from Eq. (404) does not account for
the bending of the incoming ray due to atmospheric re-
fraction, which increases the elevation angle y of the
incoming ray by A,y. Referring to Fig. 7, the change in
L due to atmospheric refraction is A,yD. Thus, the unit
vector from the observer outward along the incoming ray
is given by

N (t) A (ts) (Lso + ALso) + A,yD
[N (£:) A (t5) (Lso + ALiso) + A,

(405)

true =

This vector has been normalized since the value of the
vector in the numerator is slightly greater than unity. In
order to compute D and A,y, the azimuth ¢ and elevation
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y are required. They are obtained from Egs. (423-425)
using Lirue from Eq. (404). Given ¢ and v, the rectangular
components of D referred to the true earth equator and
equinox of t; are computed from Eq. (390). The refrac-
tion correction is computed as a function of the eleva-
tion angle y from the formulation of D. Cain (Ref. 50,
pp. 21-22):

N,
Ay = 3‘56 b.b,, v < 0.17 rad (406)
_ N X 10® -~
Ay = o . s y=20.17 rad (407)

where

N; = surface refractivity at tracking station (see Sub-
sections XII-B-2-a and -b).

b, = 1.0 — (1.216 X 10° b, y1a0)

— (BL.0 — 300.0 yxaa) (bs)* (408)
7.0 X 10+ )
b,= m — 126 X 102 (409)
1
b, = T (r — ) (410)

yraa = elevation angle, rad
a. = mean equatorial radius of earth = 6378.160 km

r = geocentric radius to the spacecraft, km
= [|r: — xa]]

b. Optical right ascension and declination. Optical right
ascension and declination obtained from the reduction
of photographic plates are referred to the mean or true
earth equator and equinox of a date tz, which generally
is not equal to the observation time (the reception time
t;). The unit vector L with rectangular components re-
ferred to the mean or true equator and equinox of ¢z is
computed from

A (tg) [Lso + A (£)7 N (£5)7 A,yD]
A (t2) [Liso + A (8)" N (2s)" AnyD] I

Lopt {mean) =

(411)
or
N (tz) A (tz) [Lso -+ A ()7 N (t:)" AD]
IN (t2) A (t2) [Lso + A (£:)7 N (£:)7 ,4D]]|
(412)

where A (fz) and N (z) are the precession and nutation
matrices evaluated at the reference time tz. The vector

Lopt (true) =
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D is computed from Eq. (390) with @ evaluated at ¢, and
o and y computed from Egs. (423-425) using L equal to
Liwe =N (ts) A (t3) Liso (413)

The right ascension and declination of a star obtained
from the reduction of photographic plates are free from
the effects of stellar aberration and refraction at least to
first order. If a second-order plate reduction method is
used, the effects of refraction can be removed completely.
However, the right ascension and declination of a space-
craft obtained from the reduction of photographic plates
are affected to a small extent by refraction because the
spacecraft is much nearer than the background stars. The

expression for the correction to the computed elevation .

angle A,y due to this effect has been derived by D. Cain
(Ref. 50, p. 22). However, the sign of the correction is
wrong and should be negative. The corrected expression is

e b,
Ay = —tan (r% = bs) (414)
where
0.00211
b= (Yraa + 0.0598)242 (415)
bs = (bt — aicosy)% — acsiny (416)
bs = a, + 51.2064 (41

The right ascension and declination of a spacecraft or star
obtained from the reduction of photographic plates are
not affected by stellar aberration; hence, AL;, does not
appear in Eqs. (411-413).

2. Computation of observed angles. The directly ob-
served angles are computed from L given by Eq. (405).
Optical right ascension and declination are computed
from L given by Eq. (411) or (412). In either case, the
rectangular earth equatorial components of L are denoted

below by
L,
L=|L,
L,

a. Right ascension and declination. Referring to Fig. 5,
compute declination § from?*

(418)

sind =L, —~90deg=8=90deg (419)

26The angular observables are measured in degrees.
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and compute right ascension from

. L
sine = cosyb‘ , Odeg=a=2360deg (420)
L,
Cos @ = c0s & (421)

b. Hour angle and declination. Compute o and § from
Eqgs. (419-421). Compute HA from (see Fig. 5)

HA=(0+))—a  Odeg=HA=360deg (422)

where
0 = true sidereal time at reception time t,
A = east longitude of tracking station, relative to true
pole

¢. Azimuth and elevation. Compute the umit vectors
N, E, and Z for the reception time ¢, from Eqs. (382-384).
Compute the elevation angle y from (see Fig. 7)

Sin'y =L-Z, Odegéyég()deg (423)
and compute the azimuth ¢ from
LE
ine = =Zg=

sino povont 0deg = o¢=2360deg (424)

L-N
cos ¢ = (425)

Ccos vy

Note that o is indeterminate for y = 90 deg.

d. X and Y angles for MSEN stations with a 9-m (30-ft)
antenna. Referring to Fig. 8, compute the angle Y from

sinY =L-N, —90deg=Y =90deg (426)
and compute the angle X from

i X—'-I-'-'—O-—E— —90deg=X=90d (427)

sinX =—=, eg =X =90deg

Note that X is indeterminate for Y = +90 deg, which can
occur only when the spacecraft is on the horizon.

e. X’ and Y’ angles for MSFN stations with a 26-m an-
tenna. Referring to Fig. 9, compute the angle Y’ from

sinY =L-E, —90deg=Y"=90deg (428)
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and compute the angle X’ from

L-N

sinX = ———
cosY’’

—90deg =X'=90deg  (429)

Note that X’ is indeterminate for Y’ = 290 deg, which
can occur only when the spacecraft is on the horizon.

€. Corrections Due fo Small Rotations of Reference
Coordinate System at Tracking Station

The computed angles may not agree with the observed
angles because the mathematical representation of the
orientation of the reference coordinate system at the track-

ing station differs from the actual orientation of the coor- .

dinate system. The difference in orientation is due to two
errors: (1) errors in the mathematical model (primarily
the difference between the actual plumb bob direction
and the geodetic plumb bob direction computed from a
reference ellipsoid of revolution), and (2) errors in orien-
tation of the instrument axes (e.g., alignment of the verti-
cal axis with the plumb bob direction for the azimuth-
elevation system).

Formulas are developed for corrections to the computed
angles as linear functions of the small rotations of the
computed reference coordinate system about each of its
three mutually perpendicular axes.

This type of correction does not apply for right ascen-
sion and declination obtained from the reduction of photo-
graphic plates.

1. Hour angle-declination. Referring to Fig. 5. the
reference coordinate system is QEP and the rotations are
¢’ about the Q axis, € about the E axis, and %" about the
P axis. All rotations are in the positive direction, using the
right-hand rule.

The dot products of L with @, E, and P are

L@ = cosdcos HA (430)
LeE = —cosdsinHA (431)
L-P=sind (432)

In terms of the rotations, the variations in the unit vec-
tors are

AQ = o/E — €P (433)

AE = ¢'P — 7/Q (434)
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AP = €Q — {'E (435)

The variation in § due to the variation in P is obtained
from Eq. (432) as

(cos 8)AS =L~ AP (436)
Substituting Egs. (435), (430), and (431) gives
A8 = ¢’'sin HA + ecos HA (437)

From Eq. (430), the variation in HA is given by

(cos 8 sin HA) AHA = —L*AQ — (sin § cos HA) A8
(438)

Substituting Eqs. (433), (431), (432), and (437) and simpli-
fying gives

AHA = 5’ + tan § (esin HA — {’ cos HA) (439)
This same equation may be obtained by differentiating
Eq. (431).

The meridian plane is determined by the vector P to
the pole and by the plumb bob line. If the plumb bob is
displaced to the west through the angle 6,,, the meridian
plane is displaced to the east through the angle

’— Ow
COS g

7

If 6., is known, this equation provides an a priori estimate
of o’

2. Azimuth—elevation. Referring to Fig. 7, the reference
coordinate system is NEZ and the rotations are 5 about N,
€ about E, and ¢ about Z.

The variations in the unit vectors due to the rotations
are

AN = ¢Z — (E (440)
AE = ¢N — 4Z (441)
AZ = yE — &N (442)

The variations in elevation y and azimuth o due to the
variations in the unit vectors are obtained from Eqs. (423
425). The results are

(443)

Ay = nsine — €cose
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Ac = ¢ — tany (y cos ¢ + €sin o) (444)

3. Angles X, Y. Referring to Fig. 8, the reference coordi-
nate system and rotations are the same as for the azimuth-
elevation system. Using Eqs. (426), (427), (440), and (441),
and Fig. 8,

AY = ~¢sinX + ecos X (445)

AX= —qn+tanY (esinX + Z cos X) (446)

4. Angles X’, ¥, The azimuth—elevation reference co-
ordinate system and rotations are also used for the X’ Y’
system. Using Eqs. (428), (429), (440), and (441), and
Fig. 9,

AY = —¢sin X’ — ncos X’ (447)

AX' = —e+tanY’ (L cos X’ — psin X) (448)

D. Partial Derivatives of Angular Observables With
Respect to Helioceniric 1950.0 Position Vectors
of Spacecraft and Tracking Station

This section gives the partial derivatives of each angular
observable with respect to the rectangular components of
the heliocentric position vectors of the spacecraft and
tracking station, referred to the mean equator and equi-
nox of 1950.0. These subpartial derivatives will be used
in Section XIV to form the partial derivative of each
angular observable with respect to the total parameter
vector q.

The partial derivatives of the observed angles with
respect to r,, obtained from an examination of Figs. 5
and 7-9 are given below. In these expressions, a sub-
script 50 after a unit vector indicates that the rectangular
components of the vector are referred to the mean earth
equator and equinox of 1950.0.

B _ (% o 20\ _ AL
ar, \0X, 0> 0%2) Tesc088

_ Awso Ayso Azso
- <r23 coss’ P25 COS & ’ 725 COS 8> (449)
08 DI,
Or, T (450)
oHA Ja
P - 51;; (451)
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B _ A,

ory - 723 COS ¥ (452)
X ]—:);T— (459)
A (456)
oD (457)

For any of these angles,
9 angle _ dangle (458)

31'3 81'2

For the directly observed angles, compute D,A from
Eqgs. (380) and (381), D,A from Egs. (390) and (391),
D', A’ from Egs. (394) and (395), and D”, A” from Eqgs.
(398) and (399). These unit vectors all have rectangular
components referred to the true equator and equinox of
the reception time ¢;. Transform the rectangular compo-
nents of each of these vectors to the mean equator and
equinox of 1950.0 as

D- A,D,A, D", A",
(459)

D5o = AT (ts) NT (ts) D

For optical right ascension and declination, compute D, A
from Eqs. (380) and (381). For angles referred to the true
equator and equinox of the date tg, transform the rectan-
gular components of D and A to the mean earth equator
and equinox of 1950.0 as

Dy =AT(tz) N"(tz) D D-> A (460)
For angles referred to the mean equator and equinox of
the date tz,

Dy =AT(tz)D D-A (461)

Note that the partial derivatives are computed using
angles affected by refraction. Strictly, these angles should
not include refraction, and the refraction correction should
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also be differentiated with respect to the position of the
spacecraft. Because of the approximations made, the par-
tial derivatives of the angular observables with respect to
the positions of the spacecraft and tracking station are
accurate to roughly five significant figures for L directed
near the zenith and three significant figures for L directed
toward the horizon. These figures apply for directly ob-
served angles. For optical angles obtained from the reduc-
tion of photographic plates, the secondary refraction
correction and hence the error in the partial derivatives
approaches zero with increasing range.

XI. Differenced-Range Doppler

A. Intreduction

This section gives the formulation for the computation
of 1-way, 2-way, and 3-way doppler observables from
the difference of two range observables whose reception
times are the end and start of the count interval T.. The
computation of accurate doppler observables with this
differenced-range doppler formulation requires a com-
puter with a large word length. On the Univac 1108
computer with a double-precision word length of 60 bits
or 18 decimal digits, the formulation for the computation
of 2-way and 3-way differenced-range doppler is accurate
to about 10-°* m/s for all count times above a lower limit
which varies from about 0.1 to 1.5 s. This formulation
was made possible by the derivation (in Appendix B) of
an accurate expression (Eq. 65) for the transformation
from coordinate time (ephemeris time ET) to proper time
on earth (atomic time Al). The computation of accurate
1-way differenced-range doppler requires a similar expres-
sion for ET minus Al obtained from an atomic clock on
board the spacecraft. This expression does not exist and
the resulting 1-way formulation is accurate to only about
10~* m/s for count times ranging from about 10 s when
the spacecraft passes by a planet or the moon at very
low altitude to about 1,000 s when the spacecraft is in
heliocentric cruise.

The primary advantage of the differenced-range dop-
pler formulation is that there is no upper limit to the count
time for 2-way or 3-way doppler, whereas count times
used with the current Taylor series formulation (Sec-
tion VIII) are limited due to truncation of the fourth
and higher even derivatives of the doppler frequency shift
in the Taylor series expansion. For an accuracy of 10-3
m/s, the maximum allowable count time for the Taylor
series formulation varies from 1-10 s when the spacecraft
passes by a planet or the moon at very low altitude to
about 1,000 s when the spacecraft is in heliocentric cruise.
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The computation of doppler observables to an accuracy
of 10~ m/s with the Taylor series formulation thus re-
quires the computation of 43 observables for a 1/2-day
pass of the spacecraft over a tracking station during helio-
centric cruise. However, preliminary considerations indi-
cate that the information content of a pass of tracking
data during heliocentric cruise is not significantly reduced
if the count time is increased to about 8,840 s, which
requires the computation of only five observables. The
use of the differenced-range doppler formulation will
allow these very large count times to be used and greatly
reduce the number of observables which must be com-
puted and hence the running time of the DPODP. Fur-
thermore, the formulation is much simpler, which further
reduces the running time and also decreases the size of
the program. The differenced-range doppler formulation
will be added to the Univac 1108 version of the DPODP,
either as a replacement for or alternative option to the
existing Taylor series formulation.

Reference 51 demonstrates the 10° m/s accuracy of
2-way differenced-range doppler. However, in order to
obtain this accuracy for 2-way and also for 3-way doppler,
a number of changes to the range observable formulation
of Section IX are required. The primary analytical change
is the use of the more accurate expression (Eq. 65) for the
relativistic transformation from coordinate time (ephem-
eris time ET) to proper time (atomic time Al). Currently,
only the first four terms of this equation are used. The
increase in numerical precision from the 16 decimal digits
of the IBM 7094 to the 18 decimal digits of the Univac
1108 is required; also, the precision of representation of
time must be increased from double- to triple-precision
seconds past January 1, 1950,0% Alternatively, time could
be represented as one single-precision word (8-decimal
digits) for the Julian day number plus one double-
precision word (18-decimal digits) for seconds past the
beginning of the day. It is also recommended that the
current type-50 n-body ephemeris be replaced by the
more accurate type-66 ephemeris or the equivalent.

The expressions for the computation of 1-way, 2-way,
and 3-way doppler observables from differenced 1-way,
2-way, and 3-way range observables are derived in Sec-
tion XI-B. Section XI-C gives the numerical and analytical
modifications to the 2-way range observable formulation
of Section IX required for the computation of 2-way and
3-way differenced-range doppler. Also, the formulation
is modified for an approximate computation of the change
in l-way range during the count time, used to compute
1-way differenced-range doppler.
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B. Equivalence of Doppler Observables and
Differenced Range Observables

The doppler observables are defined by Eq. (288),
repeated here:

1 ta,, (8T)+(1/2) T,
P=pf (F = fos) s (ST)

&3, (8T)~(1/2) T,

(462)

The notation is that of Section VIII. Equations (284-286)
give the expressions for f — fyias for 1-way doppler (F1),
2-way doppler (F2), and 3-way doppler (F3), respectively.
Substituting these equations into Eq. (462) gives

F]. = _(_;f_tﬂg_l - Cz [AfTO + le (tz - to) + sz (tz - to)z]

T,
(463)
F2= CSf;(tl) I (464)
r= St (465)
where
I _ tam(ST)+(1/2)Tﬂ fR. d ST
== /;am(ST)-(l/z)Tc ( . fT) ts( ) (466)

For 2-way or 3-way doppler, fz/fr is given by Eq. (293)

and
_ tg,, (ST)+(1/2) T, dt1 (ST)
= ./;a,,.(sr)—u/zm [ 1 dt (ST) ] dt; (ST)

The count time T, is an interval of reception time; the
corresponding transmission interval is denoted by T% and
has midpoint £, ,. Thus,

(467)

ts, (ST)+(1/2)T, txm(ST)+(1/2)Tlcl
I= f dt, (ST) — / dt, (ST)
t:

9, (8T) - (1/2) T t1,, (ST)-(1/2)T¢

=T, —T, (468)

The epochs corresponding to the start and end of the
reception and transmission intervals T, and T% are de-

noted as

ts, (ST) = end of reception interval T

ts, (ST) = start of reception interval T,
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t:,(ST) = end of transmission interval T¢

t,, (ST) = start of transmission interval T¢
Also, define 2-way range p. and 3-way range p; as

ps =1, (ST) — £, (ST) 23 (469)

where

t, (ST) = transmission time of the crest of a wave at
the transmitting station (station time at trans-
mitter)

t3 (ST) = reception time of same crest at receiving sta-
tion (station time at receiver)

Then, the range p with reception time equal to the end
of T, is

Pge = t3e (ST) - tle (ST) 2 Ecd 3 (470)

and the range p with reception time equal to the start of
T.is

p28 - t38 (ST) - tls (ST) 2 -> 3 (471)

Thus,
I1=T,— T;= [t;,(ST) — t5,(ST)] — [#,,(ST) — ¢, (ST)]
23 (472)

= P2, T P2y
For 1-way doppler, fz/fr is given by Eq. (303) and
ts,, (ST)+(1/2) T,
/ [1-
ts,, (ST)-(1/2)T,
The transmission interval at the spacecraft in UTC sec-
onds (9,192,631,770 (1 —S) cycles*” of an imaginary

cesium atomic clock at the spacecraft) is denoted by T%
and has midpoint ¢, . Thus,

ts,, (STY+(1/2)T¢ b2, (UTO)+(1/2) T
12 |1

3, (ST)=(1/2) T 2, (UTC)~(1/2) T¢

dt, (UTC)

W:‘ dt; (ST) (473)

=T, — T} (474)

27See Subsection IT1-A-4,
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The epochs corresponding to the start and end of the
transmission interval T are denoted as

t., (UTC) = end of transmission interval T?

t,, (UTC) = start of transmission interval T%

Also, define 1-way range p, as

p1 =t (ST) — £, (UTC) (475)
Then,
p1, = 5, (ST) — ., (UTC) (476)
p1, =1t5,(ST) — ¢, (UTC) (477)
Thus,
I=T,— T.= [t;,(ST) — £;,(ST)]
— [t:, (UTC) — #,, (UTC)]
= P17 Py (478)

Substituting Eq. (478) into Eq. (463), and Eq. (472)
evaluated with p, and p; into Eqs. (464) and (465), respec-
tively, gives

P1g

Fl = sz.g/c Bk-;“—

— Gy [Afr, + fr, (b2 — o) + fu, (b2 — t0)?] (479)
F2 = Cify () Lot (480)
F3 = Cefy(t) et (481)

In the computation of differenced-range doppler, the
epochs at the end and start of the count interval T are
converted from ST to ET and used to start the light time
solutions for p, and p,. This conversion is accomplished
using the general time transformation subroutine of the
DPODP. This subroutine evaluates (ET — Al) from
Eq. (93), which consists of the first three terms of the
complete expression for ET — Al (Eq. 65). The con-
verted epochs t;, (ET) and ¢, (ET) are in error by
—8(ET — Al)tae and —§(ET — Al)t33, respectively, where

8 (ET — Al) = the last seven terms of Eq. (65). That is,
8 (ET — Al) consists of the terms of
(ET — Al) not included in the general
time fransformation subroutine of the
DPODP.
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The resulting error in differenced-range doppler (DRD)
expressed in 1-way meters/second is

8(ET — Al),, — 8 (ET — Al)t%}
T,

SDRDz,‘)[

1.,
— 3P [8 (ET — Al)tss + 3 (ET — Al)tse]

(482)

where p is the 1-way tracking-station-to-spacecraft range-
rate evaluated at the midpoint of the count interval and
p is the time derivative of §, assumed constant over T..

The second term of Eq. (482) has been discussed in
Section ITI. It represents the time derivative of the ob-
servable multiplied by the error in the time at which it
is evaluated. The largest terms of § (ET — Al) are the
2-ps daily term and the 1.7-us monthly term. Furthermore,
there are unknown long-period variations in (ET — Al)
of the same approximate magnitude due to periodic vari-
ations in the heliocentric orbital elements of the earth—
moon barycenter arising from perturbations from the
other planets. Hence, Eq. (93) for (ET — Al) used in the
general time transformation subroutine may be in error
by as much as 10-® s. For a spacecraft acceleration of
25 m/s* in the vicinity of Jupiter, the resulting error in
doppler observables can be as large as 2.5 X 10-* m/s.

The first term of Eq. (482) is due primarily to neglect-
ing the 2-us daily term of (ET — Al) in the general time
transformation subroutine and has a typical value of
about 10-°* m/s. It can be eliminated in favor of a much
smaller error by a simple modification of T, used in
Egs. (479-481). If the epochs ¢, (ET) and ¢ (ET), ob-
tained using Eq. (93), are transformed back to ST using
Eq. (65) and subtracted, the result is a computed count
time given by

T, {computed) = T, + § (ET — Al)tss —8(ET — Al)t3e
(483)

The computation of differenced-range doppler using
T.{computed) rather than T, in Eqs. (479-481) elimi-
nates the error given by the first term of Eq. (482). How-
ever, the computed observable is based upon a count time
of T, (computed) rather than the correct value of T.. For-
tunately, doppler observables vary slowly with T, and
the maximum error is about 10~ m/s, which is negligible.
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Thus, differenced-range doppler observables are com-
puted from

F1 = Cofso| izl _
= Cufsro T. (computed)]

— C: [Afr, + fr, (b2 — o) + fr, (82 — 10)?]
(484)
F2 = Cuf,(t) [T—(f;:n%’@] (485)
F3 = C4f,(t,) [_ﬁg%éaj] (486)

where T, (computed) is given by Eq. (483). The formula-
tion for computing the 1-way, 2-way, and 3-way range
observables at the end and start of the count interval is
given in Section XI-C. As in the Taylor series formulation,
the variation in fg,¢ over the transmission interval T% for
1-way doppler is ignored. It is computed from Eq. (277)
using t, equal to the average of ¢,, (UTC) and ¢, (UTC)
obtained from the light time solutions for p;, and p,,, re-
spectively. This value of ¢, is also used in the second term
of Eq. (484). As in Section VIII, the doppler formulation
is valid only when f,(¢,) is constant over T% and f, (),
K, (t5), and Ks(t;) are constant over T,. Also, if T} over-
laps T, fq(t;) must equal f,(#). It is recalled that the
doppler observable which the data editing program passes
on to the orbit determination program is given by
Eq. (287), which uses fyias computed from f, (t1), fq (£s),
K. (t;), and K (f;) using Eqs. (281-283).

C. Modified Range Observable Formulation

1. Numerical considerations. Each of the computed
range observables used to form differenced-range doppler
contains random errors due to truncation of time and posi-
tion beyond the double-precision word length of the com-
puter being used.

The range observables computed by the IBM 7094
version of the DPODP contain a random error of a few
millimeters due to truncation of time (seconds past 1950)
beyond 16 decimal digits.?® The corresponding error in

28Time is represented as double-precision (54 bits on the IBM 7094
computer) seconds past January 1, 1950,0°, From 1967 to 1984,
the value of the last bit is 0.6 X 107 s, The transmission time,
reflection time at the spacecraft, and reception time (in ephem-
eris time) obtained from the light time solution may be in error
by about this amount. Hence, for a spacecraft range rate of
30 km/s, the error in computed range will be about 30 km/s X 10°
mm/km X 0.6 X 10" s = 1.8 mm.
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differenced-range doppler is a maximum of 3 X 103 m
divided by the count time (Ref. 51). However, the
differenced-range doppler formulation will be added to
the Univac 1108 version of the DPODP, which has a
double-precision word length of 18 decimal digits (60
bits). The increase in the word length from 54 to 60 bits
increases the precision of representation of time from
0.6 X 107" s to 10 s in the interval 1967-1984. This should
decrease the time truncation error of differenced-range
doppler to about 5 X 10° m divided by the count time.

For the desired accuracy of 10° m/s, the minimum
allowable count time is 5 s. Since count times as low as
0.1 s are sometimes used, it is recommended that the rep-
resentation of time be changed from double-precision to
triple-precision seconds past January 1, 1950, 0" or double-
precision seconds past midnight with one single-precision
word used for the Julian day number. This will, for all
practical purposes, completely eliminate the time trun-
cation error, and allow count times as low as 0.1 s to be
used.

In order to utilize the increased precision for represen-
tation of time, the accuracy of the light time solution for
the epochs of participation of the transmitter and the
spacecraft must be increased from the current value of
10" s to 10-% 5. For the maximum conceivable spacecraft
velocity of 1,000 km/s, the maximum error in computed
range due to an error of 102 s in the epoch of participa-
tion of the spacecraft is 10-¢ m. The maximum correspond-
ing error in differenced-range doppler is 2 X 10¢m/T,,
allowing an accuracy of 10-° m/s to be obtained for all
count times above 0.2 s.

On the forthcoming Grand Tour missions to the outer
planets, the tracking-station-to-spacecraft range will ap-
proach the 50-AU radius of the solar system. For ranges
of 29-57 AU, the computed round-trip range (p; or ps) of
57-114 AU will be represented to a precision of 1.5X10-*m
on the 60-bit Univac 1108 computer. Differenced-range
doppler may be in error by 3 X 10-*m/T. (round-trip)
or 1.5 X 10-*m/T, (one way), allowing the desired accu-
racy of 10-° m/s to be obtained for all count times above
1.5 s. For ranges of 3.5-7 AU, the round-irip range of
7-14 AU is represented to 2 X 10~ m, and differenced-
range doppler may be in error by as much as 2X10-°m/T';
(one way). For the desired accuracy of 10-° m/s, count
times as low as 0.2 s may be used.

The precomputed n-body ephemeris tapes used by the
DPODP are of the so-called type-50 format. They contain
modified second and fourth central differences of position
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and velocity. Interpolation is obtained by the fifth-order
Everett’s formula. Both the velocity interpolation error,
which affects doppler observables computed from the
Taylor series formulation, and the differenced position
interpolation error divided by the count time, which af-
fects differenced-range doppler, can approach 10-% m/s.
This small error could be eliminated by converting to the
type-66 n-body ephemeris tape format, which contains the
full sum and difference array (on acceleration) used to
generate the ephemeris. The heliocentric velocity of the
spacecraft is affected by errors in interpolation of the
heliocentric ephemeris of the center of integration for
the spacecraft trajectory, while errors in interpolation of
the heliocentric ephemeris of the earth-moon barycenter
affect the heliocentric velocity of the tracking station.

2. Formulation. This section gives the modifications to
the 2-way range observable formulation of Section IX
which are necessary for the computation of 1-way range
p1, 2-way range p,, and 3-way range p; used in Eqgs. (484~
486), respectively, to compute l-way, 2-way, and 3-way
differenced-range doppler.

The range observable p;, (where i = 1, 2, or 3) is com-
puted from a light time solution with reception time
t; (ST) equal to

t4(ST) = t,, (ST) + =T,

5 (487)

t

where
ts,, (ST) = “time tag” for doppler observable
= midpoint of count interval T, station time

Similarly, the range observable p;, (where i =1, 2, or 3)
is computed from a light time solution with reception
time equal to

1

t:(ST) =t,, (ST) — 5 T, (488)

The 1-way range observables are based upon a 1-leg
light time solution, and the 2-way and 3-way range ob-
servables are based upon a 2-leg light time solution. As in-
dicated in Subsection XI-C-1, the iteration for the epochs
of participation for the spacecraft and transmitter must
be continued until the indicated correction to the epoch
is less than 10-*? s, Aside from this change, the light time
solution for each range observable is identical to that
described in Section VI.

Since the count intervals for successive doppler observ-
ables are contiguous, each light time solution and range
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observable is used twice: once as p, for the preceding
doppler observable and the second time as p, for the
succeeding doppler observable.

a. Two-way range p, and three-way range ps. The 2-way
range observables of Section IX are computed from
Eq. (379). Considering this equation and the definition
(Eq. 489) for 2-way range p, and 3-way range p; used to
compute differenced-range doppler, it is evident that p.
and p; may be computed from Eq. (379) using F = 1 and
M= .

The (ET — Al) time transformation in Eq. (379) is eval-
uated with the general time transformation subroutine of
the DPODP using Eq. (93), which consists of the first
three terms of Eq. (65). Currently, § (ET — Al) in
Eq. (379) consists of an approximation of term 4 of Eq. (65)
(see Section I1 after Eq. 70). In order to compute accu-
rate differenced-range doppler, 8 (ET — Al) must be com-
puted from the last seven terms of Eq. (65) so that
(ET—A1)+8 (ET—A1) will equal Eq. (65) for (ET—A1L).
This expression was derived in Appendix B specifically
for the purpose of computing accurate differenced-range
doppler. However, it was shown in Section IX that all of
the terms of Eq. (65) are also required in order to com-
pute the range observables to the desired accuracy of
0.1 m.

In the computation of p; from Eq. (379), evaluation of
8 (ET — Al) at t, and ¢; is accomplished using the longi-
tude and spin axis distance of the transmitting and re-
ceiving stations, respectively. Similarly, (UTC — ST) is
evaluated at ¢, and ¢; using coefficients which apply for the
transmitter and receiver, respectively. Since the constant
range bias R, cannot affect differenced-range doppler, it
is set equal to zero in the computation of p, or ps.

The range observables of Section IX represent the time
for a signal to travel from the transmitter to the receiver
at the group velocity (= ¢). On the other hand, the range
observables used to compute differenced-range doppler
represent the time for the crest of a wave to travel from
the transmitter to the receiver at the phase velocity (== ¢).
In the presence of charged particles, the departure of
each of these velocities from c is equal in magnitude but
opposite in sign. Hence the ionospheric range corrections
A (t,) and Agp (%) in Eq. (379) for true range observ-
ables will be equal in magnitude but opposite in sign to
those for range observables used to compute differenced-
range doppler. The corrections for the true range observ-
ables will be positive.
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Each periodic relativity term of (ET — Al) is evaluated
at #;, and f,, in the computation of pz, Or ps, from
Eq. (379) and also at #;, and £, in the computation of
pz, Or ps, from Eq. (379). The effect of these four values
of a periodic term of (ET — Al) on 2-way differenced-
range doppler computed from Eq. (485) is

9Mc . (2= T. 2r
& = 3 e Yaf —_—
=", Sm(P 2)5“1(? c)

8p = effect on F2, expressed as 1-way m/s
M = amplitude of periodic term of (ET — Al), s

(489)

where

¢ = speed of light, m/s
T. = count time, s
P = period of periodic term of (ET — Al), s

p = one-way range to spacecraft, m

The periodic terms of (ET — Al) have periods of 1 day,
1 month, and 1 year. Since the minimum value of P is
1 day and the maximum possible value of T, is normally
about 1/2 day, the argument of the first sine term of
Eq. (489) will rarely exceed /2. Hence, a rough approxi-
mation for this term is its small angle approximation,

which gives
. 27\ . (2 »p
dp < Mc( P)sm( P c)

For a daily term of (ET — Al) and a count time of 1/2 day,
the right-hand side of Eq. (490) is 57% greater than that
of Eq. (489). However, for a count time of about 1/10 day,
which probably will be used with differenced-range dop-
pler, the difference between Eqs. (490) and (489) is
negligible.

(490)

Equation (490) gives the contribution to 2-way
differenced-range doppler from a daily, monthly, or an-
nual term of (ET — Al). It also gives the contribution to
3-way differenced-range doppler from a monthly or an-
nual term of (ET — Al). The contribution from a daily
term is given by

s 2\ 2r p AX
8p<MC<T>Sm(P C+?>

A) = east longitude of receiving station minus that of
transmitting station

(491)

where
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For a daily term of (ET — Al), the argument of the sine
term of Eq. (490) approaches =/2 as p approaches the
40-50 AU radius of the solar system. The argument of
the sine term of Eq. (491) can also approach /2. How-
ever, the range at which this occurs depends upon the
separation in longitude AX of the receiving and transmit-
ting stations. The maximum effect of a diurnal term of
(ET — Al) on 2-way or 3-way differenced-range doppler
is thus

. O
3p<M(T)c

The maximum effect from the 2-ys daily term of ET — Al
(term 4 of Eq. 65) is 0.05 m/s.

(492)

For a monthly or annual term of (ET — Al), the argu-
ment of the sine term in Eq. (490) is very small. Hence,
this term may be replaced by its small angle approxima-
tion, and Eq. (490) becomes

. 27 \?
s (3,

For a range of 50 AU, the maximum effect of the monthly
term of Eq. (65) (term 9) on 2-way or 3-way differenced-
range doppler is about 7.5 X 10-* m/s; the annual term
(term 3) contributes about 5 X 10-*m/s. The contribu-
tion from the 2-us daily term of Eq. (65), computed from
Eq. (493), is 0.08 m/s, whereas the actual upper limit
computed from Eq. (492) is 0.05 m/s. The ratio 0.05/0.08
is (sin x)/x evaluated at x = »/2. For a range of 10 AU
or less, Eq. (493) is a fairly accurate representation of the
contribution from a daily term of (ET — Al) to 2-way
differenced-range doppler.

(493)

In Appendix B, Eq. (493) is used to determine which
terms should be retained in the final expression for
ET — Al (Eq. 65). All terms affecting 2-way differenced-
range doppler by more than 2 X 10-* m/s/AU of range to
the spacecraft are retained. Several terms of this magni-
tude are neglected, and the resulting error in differenced-
range doppler is no more than 10-¢ m/s/AU or 5 X 10~
m/s at 50 AU (using Eq. 493).

b. One-way range p,. From the definition (Eq. 475) for
1-way range p,, it may be obtained from Eq. (379) (used
to compute the range observables of Section IX) by re-
moving the terms associated with the up leg of the light
path, evaluating the time transformations with subscript
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t, at the spacecraft transmission time %,, deleting the re-
sulting term (UTC — ST);,, and by setting R, =0, F =1,
and M = «. The result is

“‘E—l— (1+‘y)p.31n<1‘2+1'3+‘r23)

pr=

c ¢ T2+ 13— 125

— (ET — Al);, + (ET — Al);,

— 8 (ET — Al),,

—(A1 — UTC);, + (AL — UTC),,

— (UTC — ST),,

" Aup (ts) + Aigg(:a) + Asp (ts) (494)

The (ET — Al) time transformation at the reception
time 5, i.e., (ET — Al);, + 8 (ET — Al);,, relates Al time
at the tracking station to ET. It is evaluated with Eq. (65),
which applies for Al time derived from any fixed atomic
clock on earth. However, an expression is not available
for evaluating (ET — Al);,, which relates Al time ob-
tained from an atomic clock on board the spacecraft
(9,192,631,770 cycles from a cesium atomic clock equals
one Al second) to ET. The differential equation relating
these two time scales is Eq. (64). With a slight change
in notation,

dAl _ 1 _ (Ps/o - q.SE
dET — c?

1 30— 5

2 c?

Afcesium

fcesium

+ (495)

where

¢s/0 = Newtonian potential at spacecraft
Sg/0 = heliocentric velocity of spacecraft

én = average value of Newtonian potential at a fixed
point on earth

§% = average value of square of heliocentric velocity
of a fixed point on earth

It would be extremely difficult to integrate Eq. (495) to
obtain an expression for ET — Al obtained from the
spacecraft atomic clock which would be valid for the tra-
jectory of any spacecraft. From Eq. (64), the average rate
of an Al clock on earth is equal to the rate of an ET
clock (if Afeesium = 0). However, from Eq. (495), the rate
of an Al clock on board a spacecraft will be significantly
different from the rate of an ET clock if the heliocentric
distance and velocity of the spacecraft are significantly
different from 1 AU and 30 km/s, respectively. Under
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these conditions, the term (ET — Al)tze of p,, will differ
significantly from the term (ET — Al)t23 of p;,. The re-
mainder of this section gives an approximate formulation
for computing the difference between these two terms
and also the range change p,, — ps, used in Eq. (484) for
1-way differenced-range doppler.

Define a modified 1-way range p¥ as

pi=pr— (ET — Al), (496)

It is computed from Eq. (494) for p, with the term
(ET — Al);, omitted. Then,

p1, — P1, = P1, p1, + (ET — Al)”ze - (ET — A].)t28
(497)
or
Pi, — P1, = Pi, T P,
+ [te, (ET) — t,, (ET)]
— [tz, (AL) — 5, (A1)] (498)

The last two terms represent the transmission interval
T, at the spacecraft in the ET and Al time scales, respec-
tively. The last term is evaluated as the product of the
next-to-last term and an approximation to the average
value of dA1/dET from Eq. (495) over T%. The light time
solutions for p%, and p}, allow the computation of the
Newtonian potential at the spacecraft ¢g/c and the square
of the heliocentric velocity of the spacecraft §3,0 at the
epochs #,, and t,,. The potential ¢g/¢ is computed from
Eq. (338) as indicated after that equation. Assuming a
linear variation in these quantities over T%,their average
values are

1
50 = 5 [($sr0)es, + (bs/0)ey, ] (499)
0= 5 [(hods, + (@), ] (500)

Substituting these quantities into Eq. (495) gives the ap-
proximation to the average value of dA1/dET over T.
Using dA1/dET as indicated above to evaluate the last
term of Eq. (498) gives

dAl
p1, — p1, = pi, — pi, T [tz (ET) — 2, (ET)] (1 - d_ET>

(501)
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Substituting Eq. (495) gives

P ™ P1, =

pt, — pf, + [t (ET) — 1o, (ET)] {1 [(¢S"’ +5 SS/”) <¢E

(502)

15)]-

Afcesium}
fcesium

Since the mean distance of an inner planet from the earth is about 1 AU and the mean distance of an outer planet
from the earth is approximately equal to the semi-major axis of its heliocentric orbit, the average value of ¢z is given

approximately by

PMa

- 1
¢E:XI;(”‘S+”‘MG+F‘V+ 15 + p -+

5.203
where

Mss ares vy hdtas as
Hsas U, o, par, Mg — gravitational constants for the sun,
Mercury, Venus, Mars, Jupiter,
Saturn, Uranus, Neptune, the
moon, and the earth, respectively,
km?/s%;
e = 1,327.1250 X 108
ae = 0.0002 X 108
v = 0.0032 X 108
ware = 0.0004 X 108
o= 1.267 X 102
pse = 0.379 X 108
po = 0.058 X 108
pxy = 0.069 X 108
py = 4,902.78
pe = 398,601.2

Az = the number of kilometers per astronomical
unit AU

= 149,597,900 km

r = geocentric radius of tracking station, km

In Eq. (503), the gravitational constant of each outer
planet is divided by the semimajor axis of its heliocentric
orbit expressed in AU, and the gravitational constant of
the moon is divided by the mean distance to the moon.
Substituting numerical values gives

=~ 887.336 + 398601

km?/s? (504)
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Msa _f_‘ﬂ 1154 11574
oss Tt 30) +

_m M
384400%km T 7 (503)

From Eq. (B-14) and associated equations of Appendix B,
the average value of §3 is given approximately by

5. bs T ps

$E ~ + u%6%
Ag

(505)

where

u = distance of tracking station from earth’s spin
axis, km
6 = mean sidereal rate (see Eq. 273)
= 0.729,212 X 10 rad/s

Substituting numerical values gives

§2~887.131 + 0532 X 102u*  km?/s? (508)
Dividing Eq. (506) by 2 and adding the result to Eq. (504)
gives

- 1
§% =~ 1330.90 + 39860

éz +

L\‘)I)—-A

+ 0.266 X 10-8u? km?/s*  (507)
This equation is accurate to 0.01 km?/s?, a value that

affects the spacecraft range rate by 3 X 10-m/s.

The range change p,, — p:, used in Eq. (484) to compute
1-way dﬂferenced—range doppler is given by Eq. (502)
using p}_and p}, computed from Eq. (494) with the term
(ET — Al)t2 omitted, ¢sc from Eq. (499), $§0 from
Eq. (500), and (§z + %5%) from Eq. (507). The times
t,,(ET) and t, (ET) are available from the light time
solutions for p} and p} , respectively.

The l-way differenced-range doppler formulation is
based upon the assumption that (¢g0 + ¥%83,) varies
linearly over the transmission interval T;. The resulting
error in the observable varies directly with the departure
from linearity (the second derivative of ¢/ + % §3,0) and
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with the square of T%. An accuracy of at least 10 m/s can
be achieved if the count time T, does not exceed approxi-
mately 10 s when the spacecraft passes by a planet or the
moon at extremely small altitudes or 1000 s in heliocentric
cruise. This is approximately the range of count times
used with the Taylor series formulation of Section VIII.
The 1-mm/s accuracy for computed l-way doppler is
acceptable, since this data type is currently derived from
a crystal oscillator on board the spacecraft rather than an
atomic frequency standard.

Xll. Antenna, Troposphere, and lonosphere
Corrections to Observables

Section XII-A defines the correction terms for the range,
doppler, and angular observables which account for the
effects of (1) the offset of the tracking point on the moving
antenna from the earth-fixed “station location™ (see Sec-
tion VII), (2) the troposphere, and (3) the ionosphere. The
evaluation of these corrections is described in Section
XII-B. Expressions are given for the antenna and the
troposphere corrections. The general procedure for ob-
taining the ionosphere corrections is summarized.?®

A, Definitions of Correction Terms

1. Range observables. The range observables (see Sec-
tion IX) are computed from Eq. (379). The quantity in
braces represents the time for the signal (ranging code)
to travel from the tracking station to the spacecraft and
return, in seconds of station time. In the presence of
charged particles, this signal travels at the group velocity
(<c). The range corrections Agp, Arp, and Ajp in meters
divided by 10%c (where ¢ is the speed of light in km/s)
represent the time delay in seconds due to the antenna
offset, the troposphere, and the ionosphere, respectively.
Each type of correction Aip has a value A;p(t;) for the
down leg of the light path and a value A;p(¢;) for the

up leg.

The antenna corrections Aup (£;) and A,p (£;) represent
the distance along the light path from the “station loca-
tion” to the actual tracking point on the antenna at the
transmission time #, and reception time ;, respectively.
Addition of these corrections changes the round-trip light
time based upon transmission and reception at the station
location to the light time based upon transmission and
reception at the actual tracking point on the antenna.

The troposphere corrections Agp(f:) and Agp(£;) ac-
count for the increase in round-trip light time due to the

29Details are available in Ref. 59.
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reduction in propagation speed below ¢ and the increase
in path length due to bending when passing through the
troposphere.

The ionosphere corrections A;p () and Ap (£5) account
for the increase in light time due to propagation through
the charged particles of the ionosphere at the group ve-
locity, which is less than c.

2. Doppler observables. Equations (308), (309), and
(310) for 1-way, 2-way, and 3-way doppler observables
contain a term A which accounts for the effects of antenna
offsets, the troposphere, and the ionosphere. The expres-
sion for A is obtained by comparing these equations to the
equivalent differenced-range doppler formulation of Sec-
tion XI, which contains correction terms for these effects.

Differenced-range doppler is computed from the dif-
ference of two range observables whose reception times
are the end and start of the count interval T.. Each of
these range observables represents the time for the crest
of a wave to travel from the transmitter to the receiver.
In the presence of charged particles, the propagation
speed for the crest of a wave is the phase velocity, which
is greater than c.

As with the true range observables of Section IX, the
range corrections A,p, Arp, and Azp in meters divided by
10%¢c represent the time delay in seconds due to the an-
tenna offset, the troposphere, and the ionosphere, respec-
tively. For 2-way and 3-way range used to compute 2-way
and 3-way differenced-range doppler, respectively, each
of these corrections has a value A;p (£;) for the down leg
of the light path and a value A;p (#,) for the up leg. For
l-way range used to compute l-way differenced-range
doppler, there are no up-leg corrections.

The antenna and troposphere corrections are the same
as those described in Subsection XII-A-1 above for the
true range observables of Section IX. The ionosphere cor-
rections have the same magnitude as those for true range
observables but with the opposite sign, because charged
particles cause the phase velocity to increase above ¢ by
the same amount that the group velocity decreases be-
low c. Hence, charged particles of the ionosphere cause
the range code for true range observables to arrive late
by [Amp () + A (2:)]1/(10%) seconds and the crest of a
wave transmitted and received by the doppler tracking
equipment to arrive early by the same amount. Thus, the
ionosphere corrections for range observables used to com-
pute differenced-range doppler are negative.
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Comparing the correction terms of the differenced-
range doppler formulation (Section XI) to the correction
term A of the Taylor series doppler formulation (Eqgs. 308
310) gives, for 2-way or 3-way doppler,

1
A= e, [Ae () + Ap (b)) — Ap(ts,) — 2 (t,)]
(508)

where

¢ = speed of light, km/s

T, = count interval, s

ts, = epoch at end of reception interval T,
t;. = epoch at start of reception interval T,
t,, = epoch at end of transmission interval T

= epoch at start of transmission interval T
and

Ap {t) = sum of range corrections in meters due to the
antenna offset, the troposphere, and the iono-
sphere for up leg with transmission time # or
for down leg with reception time #

That is,

Ap () = Bap (£) + Arp (8) + Arp (2) (509)
As mentioned above, the antenna and troposphere cor-
rections are the same as those used for a range observ-
able; the ionosphere correction has the same magnitude
but the opposite sign (negative in Egs. 508-509) as that
used for a range observable. For 1-way doppler, the light
path consists of a down leg only and

A= rerloet) —aew)] 610

Given the midpoint #;, of the reception interval T, in
any time scale, the epochs t;, and #;, in the same time

scale are given to sufficient accuracy by

1

to, = ts,, + 5 T (511)
1
t3s = tam — "'5' Tc (512)

where T, is given in seconds of station time (ST). The
light time solution for the doppler observable has a re-
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ception time s, and a transmission time #,, which is the
midpoint of the transmission interval T%. Given ¢, in any
time scale, ,, and ¢;_ in the same time scale are given
approximately by

L=t + % T, (513)
t13 ~ th, - ‘;— Tc (514)

3. Angular observables. The formulation of Section X
for computing directly observed angles contains an expres-
sion for the increase in the elevation angle A,y of the
incoming ray due to bending of the ray by the tropo-
sphere. Specifically, A,y is the elevation angle of the
incoming ray minus the elevation angle of the straight
line path from the tracking station to the spacecraft.

B. Evaluation of One-Leg Range Corrections

This section gives the formulation for computation of
corrections to the 1-way range from the tracking station
to the spacecraft due to (1) the offset of the tracking point
on the antenna from the station location, Asp; (2) the
troposphere, Arp; and (3) the ionosphere, Ap. As de-
scibed in Subsection XII-A-1, the range observable for-
mulation includes these corrections for the up and down
legs of the light path. From Subsection XII-A-2, the
doppler observable formulation includes these corrections
for the up and down legs of the light paths whose recep-
tion times are the end and start of the reception interval T'.

1. Antenna correction. The antennas at the tracking
stations of the DSN, MSFN, and AFETR have four dif-
ferent types of mounts: (1) hour angle and declination
(HA-dec); (2) azimuth and elevation (az-el); (3) X and ¥
angles (MSFN); and (4) X” and Y’ angles (MSFN). These
angles are defined in Section X, Figs. 5-9. For the 26-m
(85-ft) HA-dec, az-el, and X’-Y’ antennas, the two mu-
tually perpendicular axes do not intersect. The offset be-
tween the two axes (the perpendicular distance between
them) is denoted by b and ranges from about 1 to 7 m.
The axis which has a fixed position relative to the earth
will be denoted as the primary axis (the HA, az, or X’
axis). Due to the offset b between the two axes, rotation
of the antenna about the primary axis causes the sec-
ondary axis to move relative to the earth.

Figure 10 shows the two mutually perpendicular axes
of a HA-dec, az-el, or X’-Y’ antenna. The primary axis
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Fig. 10. Antenna correction

(HA, az, or X’) is in the plane of the paper, and the sec-
ondary axis (dec, el, or Y’) is normal to it. The offset be-
tween the two axes is b. The positions of the station
location and spacecraft are indicated. The secondary angle
(degc, €l, or Y’) is indicated by 6.

Each range tracking system is calibrated so that the
tracking point lies on the secondary (moving) axis. That
is, the calibrated range observable obtained from the
tracking station corresponds to a l-way range § mea-
sured from the secondary axis to the spacecraft. How-
ever, the computed range observable is based upon the
1-way range p (i.e.rz or r5 of Eq. 379) measured from
a specific point on the antenna which is fixed relative to
the earth. This point is called the station location. From
Section VII, its geocentric position is represented by
spherical or cylindrical coordinates, which are solve-for
parameters. For all antennas, the station location is the
intersection of the primary axis with the plane perpen-
dicular to it which contains the secondary axis.

From Eq. (379), the computed range for the up or down
leg of the light path is r;; or r,; (denoted as p in Fig. 10)
plus Aup for that leg. The sum p + Azp must equal $.
Hence, the antenna correction A4p is given by

Ap=p—p (515)
The maximum displacement of the secondary axis from
the tracking station to spacecraft line is less than 10 m. The
maximum effect of this transverse displacement upon
# — p is about 0.5 X 10 m (for a spacecraft range of
10° m) which is insignificant. Thus, the significant part
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of § — p is due to the component of b along the direction
to the spacecraft. Since b < 10 m and p> 10° m,

p=~p—Dbcosh (516)
to an accuracy of better than 10-* m and
Agp = —bcos b (517)

From Eq. (508), the doppler observable formulation
includes antenna corrections for the up and down legs
of the light paths which have reception times equal to
the end and start of the reception interval T,. The track-
ing point for doppler observables is located along the
spacecraft to secondary axis line at a constant distance 7,
from this axis. Hence, each of the four antenna correc-
tions is given by Eq. (517) plus the constant r.. However,
since the round-trip range correction at the beginning of
the count interval T, is subtracted from the correspond-
ing correction at the end of T, the effect of 7. on A and
hence on doppler observables is zero. Hence, Eq. (517)
applies also for doppler observables.

For the 26-m HA-dec antennas of the DSN,

Aup = —bcosd (518)
where 8 is the observed declination of the spacecraft and
b =6.706 m. These antennas are located at DSN Deep
Space Stations 11, 12, 41, 42, 51, 61, and 62.

For the 26-m az-el antenna at Deep Space Station 13,

AAP =—p Ccos y (519)

where v is the observed elevation of the spacecraft and
b =09144m.

For the 26-m X’-Y’ antennas of the MSFN,

Aup= —bcosY (520)
where Y’ is the observed angle Y’ to the spacecraft and
b = 1.2192 m. These antennas are located at station MAD
at Madrid, Spain; DRA at Canberra, Australia; and ODS
at Goldstone, California.

The axis offset b is zero for the 84-m (210-ft) az-el an-
tenna at Deep Space Station 14, the 9-m (30-ft) X-Y
antennas of the MSFN, and all antennas of the AFETR
(station numbers 73-77, 79-84, and 87). Hence there are
no antenna corrections for these stations.
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The antenna correction for the up leg of a light path
is based upon the antenna type of the transmitting station
and the value of the angle 8§, vy, or Y’ to the spacecraft at
the transmission time for that leg. Similarly, the antenna
correction for the down leg of a light path is based upon
the antenna type of the receiving station and the value
of 8, v, or Y’ at the reception time for that leg. For 3-way
doppler, the antenna types at the transmitter and receiver
may be different.

The maximum transverse displacement of the secon-
dary axis from the tracking station to spacecraft line is
less than 10 m, which affects directly observed angles by
less than 20 arc seconds at the minimum spacecraft range
of 100 km. Since such small ranges are rarely encoun-
tered and the maximum attainable accuracy for directly
observed angles is only 7-11 arc seconds, the computed
angular observables are not corrected for this effect.

2. Troposphere and ionosphere corrections. Discussed
below are ray path equations, troposphere corrections,
and ionosphere corrections.

a. Ray path equations. The speed of propagation of the
doppler or ranging signal through the troposphere is
given by

o= &
" n

(521)

where
¢ = speed of light in vacuum

n = index of refraction of troposphere

From Ref. 52, p. 9, or Ref. 53 or 54,
n=1+10°N (522)
where
N = refractivity
given by
N = N5t (523)
where
N, = refractivity at mean sea level

B = reciprocal of scale height of troposphere, km™
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h = altitude above mean sea level, km

The speed of propagation through the ionosphere is
given by Eq. (521) using the following index of refraction:

n=1:t4—0£Ne

= (524)

where

N, = electron density
= number of electrons/m?

f = transmitted frequency for up or down leg of light
path (see Section VIII), Hz

For range observables, the range code travels at the group
velocity, which is less than ¢, and hence the positive sign
of Eq. (524) applies. For doppler observables, the doppler
signal (the crest of a wave) travels at the phase velocity,
which is greater than ¢, and hence the negative sign
applies. The electron density vs altitude profile is as-
sumed to be that of the Chapman model:

N, = Ny /) (--e) (525)
where
Npax = maximum value of N,
4 = (h — huax)/B

h = altitude above mean sea level, km
hmax = altitude of N, max
B

scale height of ionosphere, km

The doppler and ranging signals travel on a curved
path C through the troposphere and ionosphere. The time
for the signal to travel between the tracking station and
spacecraft along C is given by

T=[é=l nds (526)
oV ¢CJo

where ds is an increment of distance along C. The path C
follows from the condition that the propagation time T is
a minimum (Fermat’s principle). Since n is a function
of altitude only, the path is planar and may be described
by its geocentric radius r and geocentric angle ¢ from the
tracking station. Hence Eq. (526) can be written as

T= %—/;n(r)l:l + 12 (%f—)z]%dr

(527)
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where n is indicated as a function of . The differential
equation of the path which extremizes the integral (Eq.
527) is the Euler-Lagrange equation of the calculus of
variations applied to the integrand of Eq. (527).

The equations for the path C were developed by D. L.
Cain and A. Liu and were documented by A. Liu in
Ref. 55. Equation (14) gives the total bending of the path
and Eqs. (17) and (18) give the range correction. Use of
the index of refraction given by Egs. (522) and (523) gives
the bending and range correction Arp due to the tropo-
sphere. Use of n given by Eqgs. (524) and (525) gives the
bending and range correction A;p due to the ionosphere.

Given the observed value of the elevation angle, these
corrections are obtained by a quadrature integration from
the position of the tracking station to that of the space-
craft (assumed at infinite distance from the earth). Equa-
tions (14), (17), and (18) give computed minus observed
values of the corrections. However, observed minus com-
puted corrections are added to the computed values of
the angular, range, and doppler observables. For this pur-
pose, the sign of Eq. (14) and of each term of Eq. (17)
must be changed. Furthermore the factor 1/C; must be
added to Eq. (18). In the derivation of Eq. (14), the term
—E, was omitted in Eqgs. (11) and (12).

Given N, and B for the troposphere and Nyax, Amasx
and B for the ionosphere in the vicinity of a tracking
station, Egs. (14), (17), and (18) of Ref. 55, as modified
above, give the elevation angle correction used in the com-
putation of directly observed angles and the tropospheric
and ionospheric range corrections used in the computa-
tion of range and doppler observables.

b. Troposphere corrections. The expression that will be
given below for the tropospheric range correction Agp
was obtained by a procedure equivalent to the following:
For selected values of the observed elevation angle y, be-
tween 0 and /2 rad, the ray tracing formulation described
in Subsection XII-B-2-a above was used to compute the
elevation angle correction A,y and the range correction
Agp for a spacecraft at infinite distance from the earth.
Subtraction of A,y from y, gave the corresponding com-
puted elevation angle y based upon a straight-line light
path from the tracking station to the spacecraft. The cor-
rections were computed using a sea level refractivity N,
of 340.0 and a scale height of 7 km or inverse scale height
B of 0.142 km, The range corrections Ayp were plotted
vs the computed elevation angle v.
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The range correction was assumed to be of the form

A
Ap = (siny -+ B)¢ (528)
where A, B, and C are constants. Fitting this expression
to the tabular data above gave

1.8958 m
AP = Tny + 0.06483)14 (529)

which was originally obtained by D. L. Cain.

Let

N = surface refractivity at tracking station

which ideally could be computed from Eq. (523) using the
altitude h of the tracking station. The range correction
Arp varies directly with Ny and since Eq. (529) was ob-
tained using Ny = 340.0, the general result is

Ao 1.8958 m __Ns
7P (siny + 0.06483)+ ~ 340.0

(530)

Recommended values of Ny for the various. tracking sta-
tions are given in Ref. 56.

For elevation angles above 15 deg, where most tracking
data are taken, the maximum difference between the
model (Eq. 530) and the tabular data obtained from the
ray tracing formulation is 1-2 m, which is quite large.
Hence Eq. (528) was fitted to the tabular data for
15 <y < 90 deg, giving

Anp = 26m Ns
P siny + 0.015 3400

(531)

For y > 15 deg, the maximum difference between this
model and the tabular ray tracing data is less than % m.

The models (Egs. 530 and 531) are based upon an aver-
age value of the surface refractivity Ny at each tracking
station and a global average value of the scale height.
The daily departures of these parameters from the con-
stant values used are currently not accounted for. The
resulting errors in Azp from Eq. (530) or (531) are less
than 10% for about 90% of the time, with a maximum pos-
sible error of about 15%. The following listing shows the
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approximate range corrections for elevation angles of 90,
15, and 0 deg and the corresponding 10% errors:

Elevation Range 10%
angle, deg correction, m error, m
90 2.5 0.25
15 9.5 0.95
0 87 87

Reference 57 describes the daily variations in the param-
eters of the troposphere and the resulting variations in
the range correction Arp.

Equations (530) and (531) are based upon the assump-
tion that the spacecraft is at an infinite distance from the
earth. The error due to this assumption increases as the
topocentric range to the spacecraft decreases. The maxi-
mum error is about 5 m, which occurs at an altitude of
100 km and an elevation angle of 0 deg.

An expression should be found which approximates
with negligible error for all elevation angles the range
correction Arp obtained from the ray tracing formulation.
Furthermore, a correction factor should be added which
accounts for the noninfinite range to the spacecraft.

The change in the elevation angle due to tropospheric
refraction, A,y, which affects directly observed angles, is
computed from Eq. (408) or (407) of Section X. Equa-
tion (407), which applies for high elevation angles, is the
standard flat-earth textbook equation (see Ref. 58, p. 61,
Eq. 6). Equation (406), which applies for low elevation
angles, was obtained by D. L. Cain by fitting to values
obtained from the ray tracing formulas. The factor b, is
the total bending of the path, which equals A,y for a
spacecraft at infinite distance from the earth. The factor
b; accounts for the noninfinite range to the spacecraft.

c. Ionosphere corrections. The earth’s ionosphere is
caused by ultraviolet light from the sun ionizing the upper
atmosphere. The maximum electron density is in the gen-
eral direction of the sun. Hence the density of charged
particles above a tracking station increases and decreases
with a diurnal period. A given tracking station passes
under the point of maximum electron density between
12 pm. and 3 p.m. local time (1:30 p.m., average). The
electron density is a minimum and fairly constant through-
out the night. The electron density also varies with the
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magnetic latitude. It varies from essentially zero at a mag-
netic latitude of #90 deg to a maximum in the general
vicinity of the magnetic equator.

The time for the doppler or ranging signal to travel
between the tracking station and the spacecraft is given
by Eq. (526). Since the index of refraction of the iono-
sphere is given by Eq. (524), the effect of the ionosphere
on the propagation time is given by

5T = +l4°3 / N, ds (532)

Since 3T is expressed as the so-called ionospheric range
correction App divided by ¢,

For the ionosphere, the effect of the bending is negligible
and the integral can be evaluated along the straight line
path from the tracking station to the spacecraft. The
propagation speed for the doppler signal is the phase
velocity, which is greater than ¢, and hence the negative
signs of Eqs. (532) and (533) apply. The ranging signal
propagates at the group velocity, which is less than c,
and hence the positive signs apply. The integral

| w.as
o

evaluated along a particular (straight-line) light path is
referred to as the electron content for that path. It is a
function of:

(533)

(1) Time of day. For an elevation angle y of 90 deg,
the maximum electron content occurs between 12
p.m. and 3 p.m. local time. The minimum electron
content occurs at night.

(2) Elevation angle. As the elevation angle decreases,
the path length through the ionosphere and the
electron content increase.

(3) Geomagnetic latitude. The electron density ap-
proaches zero as the geomagnetic latitude ap-
proaches -+90 deg.

Unfortunately, the ionosphere is a very dynamic entity.
There are models that describe the properties of the iono-
sphere, but the parameters of the model vary greatly with
the position in the ionosphere and with time for a fixed
position in the ionosphere. The large and unpredictable
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variations in these parameters preclude the computation
of A;p from a model. Thus, the only way of determining
Asp is by making direct measurements of the ionosphere.

These measurements may be obtained from a measuring
station which is within a few hundred kilometers of the
tracking station. However, ideally, they would be made
at the tracking station along the actual ray path to the
spacecraft. Reference 59 describes the computation of
Asp for the Mariner Mars 1969 mission and discusses the
various types of ionospheric measurements and the pro-
cedure used to map measurements obtained from stations
near a tracking station to the actual ray path to the space-
craft. The mapping is also discussed in Ref. 60.

Some types of ionospheric measurements that can be
made are:

(1) Dual frequency. Two different frequencies (one of
which is an exact integer multiple of the other) are
transmitted in phase. Since the phase velocity for
the charged particles of the ionosphere and space
plasma is frequency-dependent, the two carrier sig-
nals will be out of phase when received. This phase
shift gives the total electron content along the ray
path, using Eq. (532).

(2) Group velocity vs phase velocity. As discussed in
Section XI, doppler observables are equivalent to
differenced range observables whose reception
times are the end and start of the count interval.
However, the ionospheric corrections for these
pseudo-range-observables are the negative of the
corrections for true range observables at the same
epochs. Thus, a comparison of doppler observ-
ables with differenced true range observables yields
twice the correction to doppler observables due
to the charged particles of the ionosphere and
space plasma. The doppler correction represents
the change in the electron content along the round-
trip light path during the count interval and is
used to correct the computed values of doppler
observables. This Differenced-Range Versus Inte-
grated Doppler (DRVID) technique does not pro-
vide the absolute value of the electron content
necessary to correct range observables.

(3) Faraday rotation. If the radio wave is linearly po-
larized, the plane of polarization will rotate as the
signal passes through the earth’s ionosphere because
of the presence of the earth’s magnetic field. This
is the Faraday effect. Since the earth’s magnetic
field is known, the polarization of the received sig-
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nal minus that of the transmitted signal can be
used to compute the electron content along the
ray path due to the ionosphere.

(4) Yonosonde. A radio signal is transmitted vertically,
reflected by the ionosphere, and received by the
transmitting station. The height of reflection b is
the observed round-trip ime multiplied by ¢/2. The
electron density at this height is given by (Ref. 59)

N, =124 X 102 (534)

where
N. = electron density, electrons/m?
f = transmitted frequency, Hz

As the frequency is increased, the density N, and
altitude h increase until the critical frequency is
reached where the signal pierces the ionosphere.
Substituting this frequency into Eq. (534) gives the
maximum electron density Numax. The plot of h vs f
gives the corresponding altitude HAmas. Assuming
that the electron density N, vs altitude profile is
given by the Chapman model (Eq. 525), the vertical
electron content E, is given by

E, = / N, (h)dh = BNpee (Zrefs  (535)

A comparison of E. from Eq. (535) with Faraday
rotation data gives the scale height B. Since B is
fairly constant, a constant value is usually used at
each ionosonde station to compute E, from

Eq. (535).

Currently, there is no means for directly measuring the
electron content along the ray path from any tracking
station to the spacecraft. However, plans for converting
the tracking stations to the dual frequency (S-band and
X-band) mode of operation are under consideration. Un-
fortunately, it will probably be for only the down leg of
the light path. Implementation of such a system for both
the up and down legs of the light path would provide a
direct measure of the round-trip electron content, which
would be used to compute the charged particle (iono-
sphere and space plasma) corrections for computed dop-
pler and range observables.

The DRVID technique is currently being used at Deep
Space Station 14 (Goldstone) to provide the charged-
particle corrections for doppler observables. It will be
available at other tracking stations when the Mu ranging
system (see Section IX) is installed. Faraday rotation
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equipment is also available at Goldstone. However, most
of the spacecraft to date (and probably those forthcoming)
have not had the linearly polarized antennas that are
required in order to use this equipment. Furthermore, this
equipment does not measure the electron content due to
space plasma.

For the Mariner Mars 1969 spacecraft, Faraday rotation
data from tracking of a geostationary satellite and/or
ionosonde data were obtained from measuring stations
which were within a few hundred kilometers of some of
the tracking stations. These measurements gave the elec-
tron content along ray paths differing from that of the
spacecraft.

However, the physical separation between these paths
and the difference in the measurement times were small
enough so that the parameters of the ionosphere could
be presumed to be the same for both paths. This enabled
the electron content to be mapped from the measured ray
path to that of the spacecraft, accounting for the differ-
ences in time of day, elevation angle, and geomagnetic
latitude. The details of this mapping are given in Ref. 59
and are summarized in the following paragraphs.

The Faraday rotation and ionosonde data were taken at
a constant elevation angle y (90 deg for the ionosonde
data). The ray path for each of these measurements pierces
the ionosphere (assumed to be at an altitude of 400 km)
at east longitude )\y. At an observation time ¢ (UTC), the
ray path to the spacecraft pierces the ionosphere at east
longitude A,. Then the electron content for the spacecraft
ray path must be obtained by correcting the electron
content for the measured ray path that has the measure-
ment time

Ao (deg) — M (deg)

HUTC) + =5

The measurement ray path at this time and the ray path
to the spacecraft at time ¢ (UTC) pierce the (space-fixed)
ionosphere at the same right ascension.

However, the spacecraft ray path has a different eleva-
tion angle (y,) than the measurement ray path (yu).
Hence, the measurement must be multiplied by the ratio
of the electron content at elevation angle v, to the elec-
tron content at elevation angle yy. This correction factor
is computed from an approximate formula which agrees
very well with the ratio obtained from the ray tracing
formulation (Ref. 55 and Subsection XII-B-2-a above)
using hugax = 300 km and a scale height B of 39 km.
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The approximate correction is based upon a uniform
electron distribution between the altitudes of 206.5 and
4415 km. The elevation angle correction factor is the
straight-line distance through this uniform ionosphere at
the spacecraft elevation angle y, divided by the distance
at the measurement elevation angle vy.

Finally, the electron content must be multiplied by a
correction factor which accounts for the difference in the
geomagnetic latitudes of the points where the spacecraft
and measurement ray paths pierce the ionosphere (¢, and
ou respectively). This correction factor is (90 deg — ¢o)/
(90 deg — ¢u).

Given the corrected electron content, the ionospheric
range correction Ap is given by Eq. (533).

Xlll. Variational Equations

This section gives the formulation for the solution of
the variational equations. The partial derivative of the
spacecraft acceleration vector with respect to the solve-
for parameter vector q is integrated numerically by the
second-sum procedure to give the partial derivatives of
the spacecraft velocity and position vectors with respect
to q. These subpartial derivatives are used in Section XIV
to form the partial derivatives of the doppler, range, and
angular observables with respect to gq.

The partial derivatives specified in this section are ob-
tained by differentiation of the formulation of Section V
for the acceleration of the spacecraft relative to the center
of integration. However, the relativity terms and the indi-
rect acceleration of the center of integration due to the
oblateness of the earth and moon are ignored. The nota-
tion is that of Section V.

A, Variational Equations and Method of Integration

The formulation for the acceleration of the spacecraft
relative to the center of integration is given in Section V.
In functional form, it is given by

¥=%(r, 7 q) (536)

where

r,T,¥ = position, velocity, and acceleration vectors of
spacecraft relative to center of integration with
rectangular components x, y, and z referred to
the mean earth equator and equinox of 1950.0.
The argument is ephemeris time
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g = solve-for parameter vector

g " .
—rE] = state vector (position and velocity vec-
° tors) of spacecraft relative to body B
(not necessarily the center of integration
C) at injection epoch £,

a = dynamic constants affecting spacecraft trajectory

The state vector of the spacecraft relative to the center of
integration at the injection epoch, X,, is given by

X, = X5 + (X5)o (537)
where
(X9), = state vector of reference body B relative to cen-
ter of integration C at injection epoch
Differentiating Eq. (536) with respect to g gives

oF _ oFer | o oF  oF

-'(-3—(-1— - ﬁ: a]-. -55 —9;1— aq r,;=constant (538)
Let
ox oy 0z
_FE_| oy oy 9
A“ar_ ox 0y 9z (539)
| 0x 0y 9z |
or
B=— (540)
or
aq t,;-:constant ( )
or or , or or
Z=% " [Bql 0q. ’3%] G2
. or
7= (543)
e OF
Z = E (544)
88

Then,

Z=AZ+BZ+C (545)
where the first six columns of C corresponding to the
injection conditions X5 are zero.

The variational equation (Eq. 545) is integrated numeri-
cally by the second-sum method to give Z and Z as func-
tions of ephemeris time . The partial derivative of the
spacecraft state vector.

X = [:] (546)
with respect to q at any time ¢ is
X TI'Z1_ ...,
= |z]=wiv (547)
where
_ X _ X _
U= XE = X () — U (t,t0) (548)
oX
V= Sa (549)

For each parameter q;, three sum and difference numer-
ical integration arrays, having two sums and 10 differences
of 9X/0q;, 9y /9q;, and 9%/9q;, respectively, are generated.
These three sum and difference arrays may be interpolated
at any time t to give 0x,%/9q;, dy,y/0q:, and 9z,2/0q;,
respectively, which are the elements of the g; column
of Uor V.

When the injection conditions are referred to the center
of integration, the initial value of 9X/dq at the injection

epoch is
oX .
[l = tro

where I is a 6 X 6 identity matrix. When the injection
conditions are referred to a body B other than the center
of integration C,

[BX] [ i a(xg)o]
= = pi =Bl
oq o ! Oa
The eighteen sum and difference arrays for the six
injection parameters are started at the injection epoch £,

with 0X/0X2 =1(6 X 6) as initial conditions. For rea-
sons that will become evident later, these sum and differ-

(550)

(551)
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ence arrays are restarted with initial values I at a number
of intermediate epochs t,, %5, %5, * * - ,t,. The U matrix of
Eq. (548) is then formed by the chain rule as:

go X _ 0X()  0X() X(tw) 0X(t)
TOXE T 0X(t)  0X(tn) 0X(fa-) X (to)
= U@, ta) Ultnstns) - - U(ts, o) (552)

Similarly, a U matrix from any intermediate epoch ¢; to
any time ¢ is formed by

U@,t:) = Ut tn) Utu,tp-1) * *  Utia, ts) (553)

For a dynamic parameter a;, if the corresponding col-
umn of the C matrix is always nonzero, the three sum
and difference arrays are started at the injection epoch
and continued for the duration of the mission. For each
of these parameters, the elements of the column of the V
matrix can be obtained by interpolation of the three sum
and difference arrays at the desired time #.

For certain other parameters a;, the column of the C
matrix is nonzero only for , <t <1, and the sum and
difference arrays are generated only for this interval of
time. For ¢ < #,, 9X/0a; = 0. For ¢, < t < t;, the column
of V is obtained by interpolation of the sum and difference
arrays. For ¢ >,

0X () 0X(f) 0X(t)
oa; T X (tb> oa;

ax (t,,)

U@t (554)

where 09X () /0a; is obtained from the sum and difference
arrays at the stop time #,, and U (4, %) is obtained from
Eq. (553) using t; = .

Some parameters have an initial value 0X ()/0a; at a
discontinuity epoch #, and the column of the C matrix
is zero for all time. For this case, X (¢)/0a; is computed
directly from Eq. (554); no sum and difference arrays are
generated for this type of parameter.

Some parameters are a combination of the two previous
cases. A period of time #, < t < t; exists when the column
of C is nonzero and sum and difference arrays are gen-
erated; also there are several epochs where discontinui-
ties to the partial derivatives occur. At each discontinuity
epoch or stop time for sum and difference arrays, the
increment to the partial derivative is added to the accu-
mulated partial and mapped to the next discontinuity
epoch or start time for sum and difference arrays (using
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Eqgs. 553 and 554). If the discontinuity occurs during the
integration of the sum and difference arrays, they must be
restarted using the incremented partial derivatives as ini-
tial values. For £, <t < t;, 0X/0a; may be obtained di-
rectly by interpolation. Otherwise, the accumulated value
of 0X/9a; at the last discontinuity epoch or stop time for
sum and difference arrays is mapped to the current time,

using Eq. (554).

B. Computation of A Matrix

The A matrix is defined by Eq. (539). The terms of the
spacecraft acceleration vector (considered in this section)
which are a function of the spacecraft position vector are:

(1) The direct Newtonian point mass acceleration due
to each celestial body i (nine planets, sun, and
moon),

(2) The direct Newtonian acceleration due to oblate-
ness for each oblate body j.

(3) The acceleration due to the solar radiation pressure
(SRP) and small force (SF) models.

The A matrix is computed from the following sum of
terms:

A arNewtoman aroblate a.r.(SRP - SF)
Z Z or

(555)

The formulation for computing each of these terms is
given in the following sections. The notation used is that
of Section V. All vectors appearing in the formulation are
column vectors.

1. Contribution from Newtonian point mass accelera-
tion. The direct Newtonian acceleration of the spacecraft
due to body i treated as a point mass is given by

¥= — pi(r — r9)
le —x7]°

(556)

‘where

r = position vector of spacecraft relative to center of
integration with rectangular components x, v,
and z referred to the mean earth equator and
equinox of 1950.0

r9 = 1950.0 position vector of body i relative to center
of integration

pi = gravitational constant of body i, km?/s?
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Differentiating Eq. (556) with respect to r gives

o _ Bt —x)" ol
or [lr — =Z||° IR

where I is a 3 X 3 identity matrix.

(857)

2. Coniribution from oblateness acceleration. The di-
rect acceleration of the spacecraft due to the oblateness
of one celestial body is given by Egs. (169), (173), (174)
and associated equations of Section V. Differentiating

o o

_ o (]) 1 a (])
| or “rcos¢ OA

¥ (1)
¢

() _ I:af’ 0 ar’(I) af(f]
1%
r

>

] )~ (C,S)
(560)

Differentiating Eqgs. (173) and (174) with respect to r, ¢,
and A and using Eq. (560) gives

o
Eq. (169) with respect to r, using Eq. (163), gives Br (I) E (n+2)¥ (J.) (561)
& [BGT 3Gr ., acr.f,]
o oy U FA) _q (562)
. oy’
+ G [al:af,]) + or’ i(:" 5) ] G (558)
. - (n+ 1)cos¢ P,
where 31"_(_,_]_)_ =& J (ﬁ y 0
9z 3 2 : "\ r ,
r n= in ¢ P}, — cos® ¢ P,
aaG = G7 with each term differentiated with respect : sné cos” ¢
* tox x4z (563)
BGT
r’ first column of first term of Eq. (558) o (C s)
E n+2) E [¥ (Cum) + ¥ (Sam)]
Y=Y () +¥(C.9) (559) (564)
(n + 1) sec ¢ P (C o sin mA — Sy, COS MA)
& (C,S) 2223 ‘P
o = m{—= m sec?® ¢ P (—Cum cOS MA — Spp SInMA) (565)
n=l m=1 P (~Cpp sinmd + Sum cos ma)
v m —(n + 1) cos ¢ P (Cpm cos mA + S, sinmi)
@ (C,S) _ L Z | z (-3‘1’-)“ m(sin ¢ 56c? ¢ P + P} (—Co SInMA + Sy COSMA) (566)

0z’

where ¥ (J.), ¥ (Crm), and ¥ (Sum) are the terms of ¥ due
t0 Ju, Cum, and S,,, respectively. The primes above the
terms P, and P™ indicate derivatives with respect to
sin¢.
From Eq. (164),
GT=TR~ (567)

The body-fixed to space-fixed transformation T, defined
by Eq. (162), is a function of time only. The matrix R,
given by Eq. (161), transforms from body-fixed to up-

90

(cos? ¢ P — sin ¢ P™ ) (Cm cos mA + Sym sinma)

east-north coordinates and is a function of the spacecraft
position. Thus,

oGT _, OR?

ol > Y,2 (568)
Let
€11 €12 €y
RT=]e€; e ey (569)

€31 €32 €33
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Then,

[ 0e11 0812 0€13 |

ox ox ox
aalj: = %—?;—1% 6;;3 x> y,z (570)
L 0x 0x Ox
(e )y
and
e (i B ) o
Differentiating each e;; gives
_B:Tl’l _ :0’ _ Sil:)\. — sin ¢rcos )L] (573)
Bae; — : 0, co: A — sin ¢,Sin )t:l (574)
%?<=LQQ°T¢] (575)
o = :0, - rcc"(fs"‘ﬁ ,o] (576)
%$?==:Q——;§;;,O] (577)
= 10,0,0] (578)
6;,3 _ : , six: ;possi:)u — cos ¢rcos A] (579)
éeﬂz- '0 _ singcosr cos¢sin)\]
o | rcosg ° r (580)
%?=}&—“Ti (581)

Substituting Eqs. (573-581) into Eq. (571) gives the 27
terms of 9R”/dx, 0RT/dy, and 9R”/0z used in Eq. (568) to
give 9G*/ox, 0G"/0y, and 0G7/0z, which are used in
Eq. (558).

The formulation for computation of Legendre poly-
nomials for the oblateness acceleration terms was given
in Section V. The following is an extension of that formu-
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lation used to compute the acceleration terms and the

corresponding partial derivatives:

(1) Legendre polynomials and derivatives
(n=1’233: et :nl)

The Legendre polynomial P, is computed recur-

sively from
2n—1 n—1
P,= n Sin¢Pn—1_( n )Pn—z
beginning with
P,=1
P, =sing

(582)

(583)
(584)

The first derivative of P,, with respect to sin ¢, de-

noted P, is given by
Po=sin¢ P, +nP,,

starting with

(585)

(586)

Differentiation of Eq. (585) with respect to sin ¢

gives
P! =sing P, +(n+1)P,,
beginning with

P! =0

(587)

(588)

(2) Associated Legendre functions and derivatives

(m=2’3a e ’n;n=2a3’ e 3"2)'
sec? ¢ P7 by first generating

sec? ¢ P* = (2n — 1) cos ¢ (sec? ¢ P*2)
for n=2,3, - + - ,n,, starting with
sec?¢p Pz =3

and then generating

n—1
sect P = (5 ) sin (soc* $22.)
+m—1
- (%n*) (sec*¢ Py,)

Compute

(589)

(590)

(591)
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For each value of m between 2 and n,, n is varied
from m + 1 to n,. The general term P? is zero
if b > a. Multiply sec? ¢ P™ by cos ¢ and cos® ¢ to
give sec ¢ P™ and P, respectively.

The derivative of P? with respect to sin¢, de-
noted P?, is computed from

P = —nsing (sec® ¢ P™) + (n + m) (sec® ¢ P,
(592)
Multiplying Eq. (592) by cos? ¢ and differentiat-
ing with respect to sin ¢ gives
cos? ¢ P = — (n — 2) sin ¢ P™'

+ (n + m)P™, — nP™ (593)

(8) Associated Legendre functions and derivatives

(m=1n=123, - - ,n,)

Compute
sec ¢ PL = 2n — sin ¢ (sec ¢ P2 )
n n— 1 n-1
— (2= (secp P2 ) (594)
n—1 -2
starting with
secp Pl =1 (595)

Multiply Eq. (594) by cos ¢ and 1/cos¢ to give P
and sec? ¢ P, the latter of which is indeterminate
for ¢ =90 deg.

Compute

cos ¢ PV'= —nsing (sec ¢ PL) + (n + 1) (sec ¢ PL_,)
(596)

Multiplication by 1/cos ¢ gives PL’, which is inde-
terminate for ¢ = 90 deg.

From Eq. (194),

oN 1 oUsp )

92

0Usp
—_— ——— — T —_— s 4
or  ||Uzr X U [1=NN7] {[UR X ox s Up X oy

The following sums (derived from Eq. 155) are
not indeterminate when ¢ = 90 deg, although their
individual terms are

(sin ¢ sec? ¢ PL + PL') =sec ¢ P2 (597)
(cos®* ¢ P —sing PY') =

—P%— 3sin¢ (sec ¢ P2) + P2

(598)

The Legendre functions that are indeterminate
for ¢ =90 deg appear in Eq. (565).

3. Contribution from solar radiation pressure and small
force models. The acceleration of the spacecraft due to
the solar radiation pressure and small force models is
given by Eq. (189). The spacecraft position vector r affects
rsp, EPS, and the unit vectors Ugp, X* and Y* Hence,

® 2. oo WU | . o OXF
r = —ErSRPUgP + ¥+ Ugp) "Ta';.sﬁ + (¥- X¥) or
v o Y CLA,
o W ol ’ I4 %
-+ (1' Y ) P + mfép (Gr Usp -+ G;,;X
EPS
+ YY) 2 4 — o) (599)

where

¥ = acceleration of spacecraft due to solar radiation
pressure and small forces (Eq. 189)

Yszr = acceleration of spacecraft due to solar radiation
pressure (terms of Eq. 189 proportional to A,)

From Eq. (190),

Usp [aUsp 0Usp 0Usp

1
— —_ T
or ax oy~ %= ] rse (1= UsUg]

(600)
where I is a 3 X 3 identity matrix. From Eq. (191),

oX*/or7] cos K sin K7| [ 0T /ox
I:BY*/Br] - [—sin K  cos K:I [BN/EI:I (601)

0z 0z

°U oUu U oU
UR, X ___é_'_l_’] + l:"‘"_li X Usp; "‘a‘lj'z‘ X Usp; —£ X Usp]}

ox
(602)

JPL TECHNICAL REPORT 32-71527



If the reference body B is a star,

oUg - [BUR oUg EUR] —0 (603)

or x oy oz

If the reference body B is a planet or the moon, we obtain
from Eg. (193),

WU [0Uz 0Up oUg 1
x [ o 0y 0z ] BT [I—UsUz
(604)
From Eq. (195),
dT _[oN oN oN
ar [ax X USP’ ay X USP, az X USP]
[N X ags,. N X ag;" ;N X ag:”] (605)
From Eq. (198),
9EPS 1 s r OUsp oU%
or  sinEPS I:UR | Ui :I (606)

where 9U%/0r is computed from Eq. (604) using U in-
stead of Uz and B = earth.

C. Computation of B Matrix

The terms of the spacecraft acceleration vector con-
sidered in this section are not a function of the space-
craft velocity. Hence, currently,

B=0 (607)

where the zero indicates a 3 X 3 null matrix.

D. € Matrix and Integraiion Tables for Each Parameter

In this section, the remaining partial derivatives neces-
sary to generate the three sum and difference arrays for
each parameter will be specified. These include the col-
umn of the C matrix and the initial values for 0X/9q; and
discontinuities to it for each parameter ¢;.

1. Injection parameters. The method of generating the
18 sum and difference arrays for the six injection param-
eters has been specified in Section XIII-A. Given these
sum and difference arrays, the U matrix from the injec-
tion epoch is computed from Eq. (552) and the U matrix
from each discontinuity epoch or stop time for sum and
difference arrays is computed from Eq. (553). These latter
mapping matrices are used in the computation of the
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column of the V matrix for some of the dynamic param-
eters a;.

2. Reference parameters. The reference parameters f
consist of

Ay = the number of kilometers per AU

Rg = the scaling factor for the lunar ephemeris,
km/fictitious earth radius

E = osculating orbital elements for the heliocen-
tric ephemeris of a planet or the earth-moon
barycenter or for the geocentric lunar ephem-
eris

pm, py = gravitational constants for the earth and
moon, respectively, km?/s?

They affect the position vector r{ of each perturbing body
i (a planet, the sun, or the moon) relative to the center
of integration, and hence affect the Newtonian point mass
and oblate acceleration of the spacecraft due to these
bodies. The partial derivative of the spacecraft accelera-
tion T with respect to the reference parameters f (due to
moving the perturbing bodies) is given by

Foyam
of or of

i

(608)

where

or [3rgrgf I

a? M T

I _q_
lle — =2}®

The first two terms of Eq. (609) are the derivatives of the
indirect and direct terms, respectively, of the Newtonian
point mass acceleration with respect to r¢. The last term
is the derivative of the direct acceleration due to the
oblateness of body i with respect to r¢. This acceleration
is a function of (r —19). Hence or/or¢ = —0%/0r com-
puted from Eq. (558).

|- w2z

el l[r = *2[l°

%—E— (from Eq. 558) (609)

The acceleration due to solar radiation pressure and
small forces (SRP-SF) is affected by the positions of the
sun, earth, and reference body (for roll control) relative
to the center of integration. However, the partial deriva-
tive of ¥ (SRP-SF) with respect to r{ is about four orders
of magnitude less than the first two terms of Eq. (609)
and can safely be neglected in the partial derivatives.
Hence, these terms do not appear in Eq. (609).
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Section IV gives the formulas for computing corrected
position and velocity vectors for the heliocentric ephem-
eris of a planet or the earth-moon barycenter or for the
geocentric lunar ephemeris. Also, the corrected position
and velocity vectors of the moon relative to the earth are
broken down into the position and velocity vectors of
the barycenter relative to the earth and of the moon rela-
tive to the barycenter. The relative position or velocity
vector between two bodies (a planet, sun, or moon) is
computed as a sum of the above vectors (see listing in
Section IV-C). Correspondingly, the partial derivative of
the relative position or velocity between two bodies with
respect to f may be computed as the sum of partial deriva-
tives of each subvector with respect to f. The partial
derivatives of each basic position or velocity vector with
respect to the reference parameters that affect it are ob-
tained from the derivatives of Eqgs. (111), (112), (150),
and (151):

ors s .
ézi- = ﬁ r—>r (610)
ory rh .
3 R‘; = R—‘; r-r (611)
The partial derivatives
oS ory .
oE, and E, r-r

are computed from the formulation of Subsections IV-B-3
and -4.

:z’) = Rig; r—>r (612)
;l’;f; = , aa;:i x> (613)
—g—;%— = —(—1—:%;;—; r—>T1 (614)
gf: =—7 +‘"ﬁ;'2 o r—>7T (615)
and
-:%i— = % r—>¥ (618)
aﬁzliy% r—>7 (617)
e e el BC
94

orf g .
oo QWP (619)
where
L
=

and all position and velocity vectors are corrected values.
These equations are used to compute 0r¢/of in Eq. (608).

The sum and difference arrays for Az, Rg, and E for
each ephemeris to be corrected are started at the injec-
tion epoch T’,; and continued for the duration of the mis-
sion. The initial values of 0X/0q; are obtained from
Eq. (550) or (551), as appropriate. The columns of the C
matrix are obtained from Eq. (608). At a change of phase
(change of center of integration), 9X/0g; must be incre-
mented by the following value, which necessitates a re-
start of the sum and difference arrays:

LK X
9q;  0q;

(620)

where

XY = state vector of old center of integration relative
to new center of integration at time of phase
change with rectangular components referred to
mean earth equator and equinox of 1950.0.

3. Gravitational constanis p;. The gravitational con-
stants pu; for the planets, sun, and moon affect the New-
tonian point mass and oblate acceleration terms directly.
The constants ur and uy are reference parameters, and
hence may also affect these acceleration terms indirectly.
Also, they may produce nonzero initial values at the injec-
tion epoch and discontinuities to the partials at phase
changes.

The sum and difference arrays for the p; are started at
the injection epoch with initial values given by Eq. (550)
or (551). They may be nonzero for uy or py if the injection
conditions are not referred to the center of integration.
The column of the C matrix for y; is given by

F_Fw)  NOF o
A - or{ op; (621)

where ¥ (p;)/p; is the sum of the direct and indirect New-
tonian point mass accelerations and the direct oblate ac-
celeration due to body j, computed with u; = 1. The
second term of Eq. (621) is Eq. (608) and may be nonzero
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for p; = pg or py. At a change of phase, 0X/0uy and
0X/0py must be incremented by Eq. (620), necessitating
a restart of the sum and difference arrays.

4. Harmonic coefficients J,, Cpm, Sam. The accelera-
tion terms due to the harmonic coefficients J,, Crm, Sun
of an oblate body are computed only when the distance
of the spacecraft from the center of the body is less than
a value specified by the user (radius of the “harmonic
sphere” for that body). Thus, the three sum and difference
arrays for each harmonic coefficient are started when the
spacecraft enters the harmonic sphere (or at injection)
and are terminated when the spacecraft leaves the har-
monic sphere. The initial value of 9X/0g; is zero. The col-
umn of the C matrix for J., Cum, and S, is computed
from

& ¥
ols  In (622)
o _ ¥(Cuw)
3 Co = ———-—Cm (623)

(624)

The acceleration due to each J,, Cym, and S,, may be
obtained from Egs. (169), (173), and (174). However, in-
stead of dividing the acceleration term by the coefficient
(which may have an a priori value of zero), the accelera-
tion term is simply computed using a value of unity for
the coefficient.

5. Coefficients of solar radiation pressure and small
force model. The acceleration of the spacecraft due to
the SRP-SF model is given by Eq. (189). The columns
of the C matrix for the 15 parameters of the model are

or

20, U (@25
,;j ~x (626)
% - (627)
% = %(t — T i=rnxory (628)
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_aa_(% _ _;_’;ii(t —Tau)? i=rxo0ry  (629)
:é— _ %Qf X* u* (¢ — Tszs) (631)
aac':f,, = DLy ¢ Tear) (632)
% = %(EPS) i=rzxory (633

The three sum and difference arrays for each of the nine
SF parameters are started at T 44, using zero for the initial
values of the partial derivatives, and continued to the
epoch T4¢.. The three sum and difference arrays for each
of the six SRP parameters are started at Tggp, using zero
for the initial values of the partial derivatives, and con-
tinued for the remainder of the mission. Each time the
spacecraft passes into or out of a shadow, all sum and
difference arrays must be restarted.

8. Coefficients of finite burn motor model. The acceler-
ation due to a finite motor burn is given by Eq. (197).
The columns of the C matrix for the polynomial coeffi-
cients F;, a;, and 8; (i =0,1,2,3, or4) are

or tC
L mD ® U (634)
o [ —cos8sine ]
. —@| cosdcosa & (835)
o ] 0 i
o [ —sind cos |
=5~ =a| —sindsina t (636)
’ cos 8

The three sum and difference arrays for each of these
parameters are started at T, with zero initial conditions
and terminated at T; = T, + T.

The three sum and difference arrays for T, (specified
in the UTC, ST, or Al time scales) are started at T, using
as initial conditions:

a}; go) _ [__9&335-1_)_ ]



The column of the € matrix for T, is

o

57,: = — [aU + aU] (638)
where
. Fi+9Fi +3F# + 4F P
- m (t)
a o 2 * L.
—é&cosdsineg — § sin8 cos
U= &cosdcosa— Ssindsina (640)
$coss
and
@ = o + 2t + Sast? + da,d® (641)
8 = 8, + 28, + 35,72 + 48,3 (642)

The sum and difference arrays for T, are terminated at
T; =T, + T, and the following increment to the partial
derivatives is added:

A

oX(T)
o= [a(T»U(Tf) (643)

0(3X1)
oT,
The initial value of the partial derivative with respect to
T occurs at T;:

(644)

axa(;' n_ [_ oEX1 ]

~ La(T)U(T))

There are no sum and difference arrays for the param-
eter T.

7. Parameiers for instanianeous burn motor model. A
motor burn of short duration or a spring separation may
be represented as a discontinuity to the spacecraft tra-
jectory. The rectangular components of the velocity incre-
ment A¥ and the burn time #; are the solve-for parameters.
The increment to the spacecraft position at the maneuver
epoch Ty is computed as

1.
Ar = — Aty

5 (645)
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There are no sum and difference arrays for these four
parameters. However, the initial values of the partial
derivatives at Ty are

"ty 0 0 lax -

0 % 0 %Ay

0 0 Y% %AZ
[%%%%]z 10 ob o | 9

0 1 0 0

L0 0 1 0 _

8. Parameters affecting transformation from atomic
time to ephemeris time. The parameters AT:ess and
Afcesium affect the ET values of the following epochs,
specified in a known time scale (A1, UTC, UTI, or ST, but
usually UTC) and represented as seconds past January 1,
1950, 08:

(1) Injection, Tn;
(2) Unfolding of solar panels, Tszr

(3) Start and stop times for small force polynomials,
T4, and T 4o,

(4) Epoch of instantaneous maneuver, Ty

(5) Start and stop times of finite burn motor, T, and T;

Since the acceleration versus time curve for the finite burn
motor is shifted in ET, sum and difference arrays for
AT pss and Afcesium must be generated from T, to
T; =T, + T. Also, discontinuities to the partial deriva-
tives with respect t0 AT1ese and Afeesium occur at Ting,
Tsep, Tac1, Tacz, Tu, To, and T,

The partial derivatives of the ET value of an epoch T
specified in the Al, UTC, UT1, and ST time scales with
respect to ATip55 and Afeesium are (see Eq. 93)

oT (ET) _

aAT1958 - 1 (647)
oT(ET) T — 252,460,800
aAfcesium - 9,192,631,770 (648)

An infinitesimal change in the ET value of the injection
epoch, dT,; (ET), holding the injection state vector X2
fixed, is equivalent to the following changes in the injec-
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tion position ¥, and velocity ¥, relative to the center of
integration at the nominal epoch T',; (ET):

d!'o = _inginj (ET) (649)
dl.'o - _'al:g dTinj (ET) (650)

where

2 = solve-for velocity of spacecraft relative to body B
at injection epoch

¥8 = acceleration of spacecraft relative to body B at
injection epoch

Hence, the initial values of the partial derivatives of X
with respect to AT;p55 and Afcesium 2t the injection epoch
are

0X (Tiny) v

AT [}103] (651)
0X (Tsny) _ Tiny — 252,460,800 [ 2 oo
Afoestum 9192631770 | 72 (652)

Similarly, at the epoch Ty of an instantaneous maneuver,
0X /0 (AT 1955) and 0X/0 (Afcesium) must be incremented by

X (Ty) _ —AF ;
Ty ['r; -—] (653)
OX(Tw) _ Tu— 9252460800 AF 65
e 0002631770 |E =% | (659

where

0@

¥, = ¥ at Ty after Ar, Ar have been added
¥, =¥ at Ty before Ar, At have been added

At the epoch Tszr where the solar panels are unfolded,
the partial derivatives must be incremented by

0X(Tere) _ [ 0(BX1Y) ]
A AT 058 I:.fsm’ (Tsrp) (655)
A 0X (Tser) _ Tsrr — 252,460,800 0(3X 1) (656
WA foesium  9,192,63L770 | Yerp (Tsrr) )

Since the small force accelerations are extremely small,
the increments to the partial derivatives at T 40, and T se.
have been ignored.

JPL TECHNICAL REPORY 32-1527

The three sum and difference arrays for AT;gs5 and for
Afcesium are started at T, for the finite burn motor and
terminated at T; = T, + T. The initial values of the par-
tial derivatives are given by

X(T) [ 0BX1)

T [;;(T;)‘ﬁ"(T;)'] (657)
OX(T,) _ To— 252,460,800 0(3X 1)
Do 0,192,63L770 [E(fojif(T;)'] (858)

The increments to the partial derivatives occurring prior
to T, are mapped to T, and added to the above values.
The columns of the C matrix are computed from

o

AT 1056 =7 [éU + aﬁ] (659)
&  T,— 252,460,800 . .
oo 0192631770 ¢V TaUl  (660)

At Ty, the partial derivatives must be incremented by

oX (T;) [ 03X1) :l
v Tt IR ey 61
A aAT1958 a (TI> U (Tf) (6 )
oX(Ty) _ T, — 252,460,800 03X
Afcosiom 9,192,631,770 | a(T)U(T;)
(662)
E. Summary

The solution to the variational equations is the matrix
0X/oq given by Eq. (647). The U matrix is computed using
Eq. (5652). Each column of the V matrix corresponding to
parameter q; is obtained by one or more of the following

methods:

(1) Interpolation of the three sum and difference arrays
for q;.

(2) Mapping forward the final partial derivatives from
discontinued sum and difference arrays, using
Eq. (554).

(3) Mapping forward a discontinuity to the partial de-
rivatives using Eq. (554).
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XIV. Regression Partial Derivatives

This section gives the formulation for computing the
regression partial derivatives which are the partial deriva-
tives of each observable quantity with respect to the
solve-for parameter vector q. Section XIII gave the for-
mulation for integrating the variational equations which
yield the partial derivatives of the spacecraft state vec-
tor at any time ¢ with respect to gq. These subpartial
derivatives are required to form the regression partial
derivatives.

The general expression for computing the partial deriv-
atives of doppler and angular observables with respect to
q is given in Section XIV-A. The formulation for com-
puting the various terms appearing therein is given in
Sections XIV-A to -E. The formulations for computing the
partial derivatives of range observables and differenced-
range doppler observables with respect to q are given in
Sections XIV-F and -G respectively.

The DPODP currently does not have the capability for
solving for the relativity parameter y. However, approxi-
mate partial derivatives of the observables with respect
to y are included in Sections XIV-E and -F. These partial
derivatives are based solely upon the variation of the rela-
tivity term of the light time equation (Eq. 203) with v.
A solution for y using these approximate partial deriva-
tives should converge when the spacecraft passes through
superior conjunction and the relativistic correction to the
light time becomes very large. The partial derivatives do
not account for the smaller effect of y on the ephemerides
of the celestial bodies and the spacecraft.

Differentiating Eq. (663) with respect to g gives

% _ % [axg (t3)]
aq ax‘g (t3) aq tg=constant

9z X5 (£.) . at, (ET)
+ an (tz) {[ ]tz:constant + Xg (tz) |:

oq

%% xS (t,) ] . [at1 (ET)
X8 (&
+ aXf (tl) {[ aq t1=constant + * ( 1) aq

0z
+ [a—
q ¢, time transformations=variable

0%
+ [a_
q Xf(ta) , Xf(tz) ) Xf(tl) =constant
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A. General Expression for Partial Derivatives of Doppler
and Angular Observables With Respeci io g

Let

z = an observable quantity (doppler or angles)

q = solve-for parameter vector

<=3

= heliocentric state vector (position
and velocity vectors) of direct
participant { at its epoch of partici-
pation #;, with rectangular
components referred to the mean
earth equator and equinox of
1950.0. The units are km and
km/ephemeris second.

. ¥ (8)
S (4. = | LV Y
X3 () [f’f ()
The direct participants i are
1 = transmitter on earth at transmission time %..

2 = spacecraft at intermediate time ¢, (or transmission
time ¢, for angular observables or 1-way doppler).

3 = receiver on earth at reception time #,. For doppler,
t; is the midpoint of the count interval T.

For purposes of obtaining partial derivatives of an observ-
able z with respect to the parameter vector g,

z = 2 [X5 (£, ), X5 (2, @), X} (£1,9), q] (663)
aq :Ic, time transformations=constant}
:l ¢, time transformations=constant
(664)
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The terms of Eq. (664) are of two basic types. The last
term gives the direct variation of the observable z due to
a variation in q, holding the state vectors of each partici-
pant constant. The remaining terms give the variation in
the observable due to variations in the state vectors of
each participant. The term on line 1 and the first terms on
lines 2 and 3 give the direct variation in the state vector
(and hence z) with respect to a variation in g holding the
epochs of participation constant. Since the state vectors
are a function of g, the epochs of participation ¢, (ET) and
t, (ET) obtained from the solution of the light-time prob-
lem will also vary with q. The second terms on lines
2 and 3 account for this effect. The epochs of participation
may also vary due to variations in ¢, the speed of light,3°
and the parameters affecting the time transformations
which are used in the light-time solution. The partial
derivative of z with respect to q due to these effects is
indicated on line 4.

The partial derivatives of the heliocentric state vectors
with respect to the parameter vector q, holding the epochs
of participation constant, are given by the following sums:

0X5 ()  0XE(ts) | 0XE (1)

g oq + 2q (665)
0X5(t) _ 0X3*(8) | 0X5, (t:)

¢  9q oq (666)
oXi(t) _ 0X{(t)  0X5 ()

oq  og + oq (667)

where

B2 = center of integration for free spacecraft or body
on which a landed spacecraft is resting

E = earth
S = sun
The partial derivatives 9z/0X8 (¢;), 9z/0X5 (t,), and

0z/0X5 (t,) for doppler and angular observables are given
in Section XIV-B.

For a free spacecraft, 9X22 (¢,)/dq is obtained from the
solution of the variational equations (Section XIII).

30The speed of light is an adopted constant that defines the light-
second as the basic length unit. It is not normally included in the
solution vector.
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In Section XIV-C, the formulation is given for com-
puting 9XZ (¢5) /9q, 0X% (t,)/0q, and 0XZ22(t,)/oq (if point 2
is a landed spacecraft on a celestial body).

The partial derivatives 9X5(t;)/0q, X5, (%,)/0q, and
0X8 (t,)/0q are computed from the following (where
E = earth, M = moon, B = earth-moon barycenter,
P = planet, S = sun):

oX5 _ oX§  oXx

=%~ 5 (668)
aX§, _ oXS | oX®

= et (669)
0X; _ 9Xp

. T (670)

where the right-hand terms are obtained from Egs. (610~
619) (Eq. 610 applies also for P = B). The columns of
Egs. (668-670) are nonzero only for the reference param-
eters Ag, Ry, pg, pa, and osculating orbital elements E for
the ephemeris of a planet, the earth-moon barycenter, or
the moon.

The derivatives 9t, (ET)/8q and 9% (ET)/0q are ob-
tained by differentiating the light time equations (Egs. 313
and 314), ignoring the relativity terms. Using the notation
of Section VIII-C, the results are

. T )
ot, (ET) _ 17, [og (%2) _or§(ts) 14 E’-:é) (671)
L] C Ty3 oq oq c

3, (ET) _ o, (ET) (1 3 1&>

oq  oq c
L) M), b
C Ty oq oq c
(672)

The partial derivatives of 5 (&), 3 (L), and =¥ (%) with
respect to g are simply the first three rows of Eqs. (665-
667), respectively.

The last two terms of Eq. (664) are evaluated in Sec-
tions XIV-D and -E, respectively.

For angular observables, Eq. (664) is evaluated with the
state vector X of each participant taken to be its position
vector only. Since angular observables and 1-way doppler
involve only two participants, the third line of Eq. (664)
is omitted for these data types.
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From Eq. (311), the partial derivative of a subinterval
doppler observable z with respect to q is given by

m

a_z 1 az,-

where z; is the doppler observable computed for subinter-
val i and 9z;/0q is computed from Eq. (664) and associated
equations using a count time of T./m.

B. Partial Derivatives of Doppler and Angular
Observables With Respect to Stafe Vectors of
Each Direct Participant

1. Doppler observables. One-way, 2-way, and 3-way
doppler observables are computed from Egs. (302), (308),
(309), (310), (343), (344), (371), (372) and auxiliary equa-
tions of Section VIIL. The partial derivatives of these ob-
servables with respect to the heliocentric state vectors of
the three participants are obtained by a straightforward
differentiation of these formulas, ignoring the terms of
Egs. (308), (309), and (310) which contain the very small
factors Fy, F, and A.

The 1/c and 1/c¢* terms of Egs. (343) and (344) for
[1 — (Fr/Fr)] were differentiated. For 2-leg doppler
(2-way or 3-way doppler), however, the relativistic terms
(¢1 — ¢s) and % (52 — §3) were ignored. The potential term
contributes a maximum of only about 10 m/s to range
rate. The velocity term has a maximum value of about
0.1 m/s, but its variation due to a variation in the param-
eter vector q is very small. For 1-way doppler, these rela-
tivistic terms can be very large, and hence were included
in the differentiation. For this purpose, the potential was
assumed to be due to the sun only, a reasonable assump-
tion for the inner part of the solar system.

Only the 1/c terms of Eqs. (371) and (372) for
[1— (Fr/Fr)]" were differentiated.

Near earth, with a range p = ry,, 15; = 100 km, and
a count time T, = 10 s, the partial derivatives from
[1— (Fgr/Fz)] " are the same order of magnitude as those
from [1 — (Fg/Fr)]. Since the 1/¢? terms of [1 — (Fy/Fyr)]*
were not differentiated, the partial derivatives for this
extreme near-earth case are good to about four figures.

The ratio of the partial derivatives derived from
[1— (Fr/Fz)]" to those derived from [1 — (Fr/Fy)] is
proportional to (T./p)?. For p increasing from 100 km
(with T, = 105) to 10°km (with T, = 1000s), the factor
(T¢/p)? reduces by four orders of magnitude, and the
partials from [1 — (Fg/F)]" are the same order of mag-
nitude as those from the 1/¢® terms of [1 — (Fgx/Fy)].
Hence, when the spacecraft is far from the earth (and
other bodies), the partial derivatives are accurate to seven
or eight figures.

In deriving Eq. (664), the dependency of the observable
z on the acceleration and jerk vectors® of each participant
was ignored. This omission limits the accuracy of the
partial derivatives to four or five significant figures for
p = 100 km, and seven or eight significant figures for
p = 10° km or more. This limitation on accuracy is the
same as that resulting from truncating the doppler for-
mulas before differentiating.

The partial derivative of l-way doppler (F1), 2-way
doppler (F2), or 3-way doppler (F3) with respect to the
heliocentric state vector X3 (¢;) of the ith direct participant
at its epoch of participation ; is

(673)

FR)* i ( FR.)*
02 8(1-—*— {1l — = ,
W—CG[ Fr E Fy i=120r3

ors (&) 0¥ (#:)
where
z=F1,F2,0r F3
and
C:fsro for F1
Co=1{ Cifq(ts) for F2
Csfq(ts) for F3

31The jerk vector is the time derivative of the acceleration vector.

160
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The partial derivatives of [1 — (Fp/Fr)]* (see Eq. 302)
with respect to the heliocentric position and velocity vec-
tors of each participant are functions of the following
quantities (see Section VIII for definitions of terms):

bl [_ (o) | e (m)f] [14 2 G0

c T2 T2 T2

—+ ._1_ [__ (il)T + é}i (r12)T] ;,12

c? T2 T2 712
T2 Ffe 5\ (1)
c L 12812 12 12
+ 32 712—6—+67)—
24cry, T12 12 712

N
+3 (r . 22) (L P E ('i-'lz)T]
712 T12 T12

(674)

D (1? © 2;) — Eq. (674) with subscript 12 changed to 23
i and vice versa, and subscript 1 changed
to 2.

D* = D with the 7,; term removed

p=- 1O 16, 5]

C Ty
T2 o %, (1' 12)T
+ 1‘12 - 2 el s
801' 12 712 1'12
T12

+ 2.7 ()7 — (fn)f] (675)
12
E (124>23) = Eq. (675) with subscript 12 changed to 23
and vice versa.

E* = E with the #,; term removed

=_1_ (r12)T o

AE Gy, o (676)

For 2-way or 3-way doppler,

*
()
— T _p

(e ®m
_ Er\*
L) o) oy
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(679)

For 1-way doppler,

(1=

FT) 12623 1 g .
W— b ( 12 )_ & (ry)° (r2) (680)
° (1 -~ %) 1223 1

Y= o _bs
ar§ (t%) - D ( 1-9 >+ c? (1'3)3 (l's)T (681)
For 2-way or 3-way doppler,
? <1 - %ﬁ)
— L = E+AE (682)

o (t1)

=E(12623) + AE(1223) — E

of; (1)
(683)
F E3
? (1 - —")
FT .
—Ema E (12 23) (684)

= E*(126:23) + AE (12693) + = (£)"

off (t.)
(685)
0{1——
FT o
(aﬁ o ) = —E(12028) — G (686)

2. Angular observables. The partial derivatives of an-
gular observables with respect to the heliocentric position
vectors of the spacecraft and tracking station are given by
Eqgs. (449-461) and auxiliary formulas of Section X.
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€. Partial Derivatives of Body-Centered State Yecior of
Tracking Station or Ship or Landed Spacecraft With
Respeci to Parameter Vector

1. General formulas. This section gives the partial
derivatives of XE (¢;) and X7 (¢,) for a fixed tracking sta-
tion or a moving tracking ship and X22(¢,) for a landed
spacecraft on a planet or the moon with respect to the
parameter vector q. The parameters that affect these state
vectors are the three spherical or cylindrical coordinates
of a fixed tracking station or landed spacecraft and spheri-
cal coordinates at an epoch plus velocity and azimuth for
a tracking ship. Each of the state vectors above, with rec-
tangular components of position and velocity referred to
the mean earth equator and equinox of 1950.0, will be
denoted here by

Xy = [;5: ] (687)

From Egs. (242), (243), (246), and (247),
50 = Tirp (688)
50 = Tiry + Tity (689)

where 1, is the body-fixed position vector of the station
(fixed tracking station, tracking ship, or landed spacecraft)
defined in Section VII-A, 1y is the body-fixed velocity vec-
tor (nonzero for the tracking ship only), T; is the 3 X 3
transformation matrix for body i which transforms body-
fixed rectangular components of a vector to rectangular
components referred to the mean earth equator and equi-
nox of 1950.0, and T; is the derivative of T; with respect
to ephemeris time. The body-fixed to space-fixed trans-
formations T; and T; are not functions of solve-for param-
eters. The one exception to this is Ty for the earth, which
is a function of Afeesium. However, it affects the magnitude
of T35, by less than 10-5 m/s, and hence is ignored in the
partial derivatives. Thus,

Brb
Ti—
BKao | a___. (690)
oq Br Bi'b
T — + Ti—

2. Partial derivatives of body-fixed position and velocity
vectors with respect to parameter vecior. Discussed below
are the cases for the fixed tracking station (or landed
spacecraft) and the tracking ship.
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a. Fixed tracking station or landed spacecraft. The
partial derivatives of r, with respect to spherical station
coordinates are obtained by differentiating Eq. (212):

—cos¢cos)t
ory . _ Iy
or | cosesin | = (691)
sin ¢
-—rsinchos)L
I |~ rsingsina (692)
% = 7 sin ¢ sin
7 COS ¢
i —rcos¢sin
o 7 cos A (693)
PT COS ¢ COS
B 0

The partial derivatives of r, with respect to cylindri-
cal station coordinates are obtained by differentiating
Eq. (213):

Ccos A
Brb
Su | sin (694)
Y
[0
Brb _
5 | 0 (695)
1
[ —usin A
al'b
S | ucosa (696)
R 0

These partial derivatives are evaluated with coordinates
referenced to the true pole, equator, and prime meridian
of date (the body-fixed coordinate system). They apply
for the solve-for coordinates of a landed spacecraft,
which are referenced to this coordinate system, and also
for the solve-for coordinates of a tracking station on
earth, which are referenced to the mean pole, equator,
and prime meridian of 1903.0. For this latter case, the
partial derivatives are accurate to approximately seven
significant figures.

b. Tracking ship. The formulation for computing 1, for
a tracking ship is given in Subsection VII-B-2. The solve-
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for parameters of this model are the constant geocentric
radius 7, the latitude ¢,, and longitude ), at the epoch
t,(UTC), the constant speed v, and the constant azi-
muth A. From Eq. (239), the partial derivative of r; with
respect to each of these parameters, denoted as g;, is com-
puted from

Ory _ O 9 Oy 0A | Orp (697)

9q; 04 9q;  OA 9q; = 0G| g, r=tixea
Similarly, from Eq. (240),

By _ Oy Bp Oy DN OFy (698)

99;  0¢ 9q; = oA 3q;  0Gi | ¢,n=tixea

The partial derivatives of r, with respect to ¢ and A are
given by Egs. (692) and (693). The last term of Eq. (697)
is nonzero only for q; = r; it is given by Eq. (691). The
partial derivatives of ¥, with respect to ¢ and X are ob-
tained by differentiating Eq. (240):

COS ¢ COS A
oty .
6¢=_ cospsindr |vcosA (699)
sin ¢
cos Asin ¢ sin A — sin A cos A
6.
-5;1= —cosAsing cosA — sinAsinA |v  (700)

0

The last term of Eq. (698) is nonzero for ¢; = A and v:

sin A sin ¢ cos A — cos A sin A

%’1 =] sinAsingsinA + cosAcosh |op
¢, A=fixed
—sin A cos ¢ (701)
k3 _b (702)
ov ¢, A=1Tixed ©

which should be computed from Eq. (240) with v = 1.

The partial derivatives of ¢ with respect to the solve-
for parameters are obtained by differentiating Eq. (235):

3_95__ (¢"¢o)

o " (703)

% _,

e (704)
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0p _
a0 7
9  vsinA _
5i=——, [t(UTC) =1, (UTC)]  (706)
0p _cosA _
== == [+(UTC) — £ (UTC)] (707)

The partial derivatives of A with respect to the solve-for
parameters are obtained by differentiating Eq. (237) using
Eqgs. (703-707) for A 90 deg or 270 deg and by differen-
tiating Eq. (238) for A = 90 deg or 270 deg. For A=£490
deg or 270 deg,

oA vsin A

oA 1 1
- = tanA (cos o ¢o) (709)
oA
o =1 (710)
T, ¢
tan (-— + —)
-:—j; =sec?Aln ""—"1“—2-
tan (l + ?ﬂ)
4 2
vsinAtan A
~ s [t (UTC) — t, (UTC)] (711)
o _ sS4 1 UTC) — 1, (UTC)] (712)

v rcos¢

For A = 90 deg or 270 deg, with the top sign applying for
A =90 deg and the bottom sign applying for A =270 deg,

% -5 c;’S 5 [£(UTC) —4,(UTC)]  (713)
% = (A — Ao) tan ¢o (714)

=1 (715)

Z=0 (716)

Do - - [£(UTC) — 5, (UTC)] (717
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D. Partial Derivatives of Doppler and Angular
Observables With Respect to Speed of Light and
Parameters Affecting Time Transformations

This section gives the partial derivatives indicated on
line 4 of Eq. (664). These are the partial derivatives of
doppler and angular observables z with respect to g due
to (1) variation of the speed of light ¢ in the light time
solution only, and (2) variation of the time transforma-
tions used in the light time solution. The parameters
affecting the time transformations are AT 1555 and Afcesium,
which affect (ET — Al), and the polynomial coefficients
a, b, and ¢ (specified by time block) of (UTC — ST) for the
receiving station. Additional terms for 02/0AT 1055, Afcesium
arise from the variational equations. These partials are
substituted into the first term of Eq. (666) and hence
appear on line 2 of Eq. (664). The polynomial coefficients
b and ¢ and the speed of light appear explicitly in the
doppler equations; hence, line 5 of Eq. (664) contains
additional terms for the partial derivatives of z with re-
spect to these parameters (see Section XIV-E below).

1. Speed of light c. Given the reception time #; (ET),
the solution of the light time problem for ¢, (ET) and
t, (ET) is affected by the value used for ¢. For angular
observables, however, a change in ¢ of 3 km/s along with
a spacecraft velocity of 300 km/s will produce a maxi-
mum change of only 0.002 arc seconds. Flence, this partial
derivative is ignored for angular observables. The partial
derivative of a doppler observable z with respect to a
change in ¢ in the light time equation is given by

% 0z s, OL(ET), 2z ., . ot(ET)
5e = XE(G) ) Toe T axE () N ) T
(718)

Differentiating the light time equations for the down and
up legs (Eqs. 314 and 313, respectively) with respect to ¢
gives

ot éfT) _ 1 (ET) —t (ET) (1 + pT) (719)
ot g:T) _ ot éfT) (1 B %> L B(ET) :tl (ET) (1 + 2(}_) (720)
Substituting Eqgs. (719) and (720) into Eq. (718) gives
2 - i MDA
N Eﬁgf'z('tl—) fa {t3 (ET):tQ (ET) [ L4 % (1523__;12)] L B(ET) :tl (ET) (1 + pT>} (721)

For 1-way doppler, omit the second term.

2. Parameters affecting (ET — Al) time transformation:
AT 955 and Afcesiume The observables are computed from
the state vectors

X8 (ts) = X2 (8;) + X5(ts) (722)
X5 (t) = XB2(t,) + X8, (1) (723)
X5(t) = X8 (¢,) + X5 (t,) (724)

The state vectors X5 (), X5, (), X5 (t,), and X22 (¢,) are
functions of ephemeris time. From Section VII-D, the
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state vectors X2 (¢;) and X7 (£,) are functions of both the
UT1 and ET values of the epoch. However, the variation
in XE(t;) due to 8t; (ET) is insignificant compared with
the variation due to 8¢; (UT1). Thus, for purposes of tak-
ing partial derivatives, XZ (t;) and X¥ (¢,) are considered
to be functions of UT1 only.

Given the data time tag £; (ST) (the midpoint of the
count interval for doppler observables), the values of
t; (ET) and #; (UT1) are computed from

t; (ET) = 1, (ST) + (UTC — ST),,
+ (Al — UTC),, + (ET — Al),,  (725)
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ts (UT1) = £, (ST) + (UTC — ST),,
+ (Al — UTC);, — (A1 — UTL),, (726)

Using Egs. (93-96) for these time transformations,

ots (ET)
Larnd) o 72
aAT1958 1 ( 7)
o, (ET) _  t, — 252,460,800
Bformrem . 9,192.631770 (728)
8, (UTL) _ oty (UTY)
aAT1958 aAfcesium =0 (729)

Differentiating the light time equation for the down leg
(Eq. 314) with respect to ATq55 and Afcesium gives

ot (ET) (1 _ f%i) ot (ET)
aAi"1958 - aAT1958
AT'19.=38 - Afcesium (730)
where
#y =2 (8 (1) — 1 (t)] (731)

Differentiating the light time equation for the up leg
(Eq. 313) and

t, (UT1) = t, (ET) — (ET — Al),, — (A1 — UT1),,

(732)

0z 0% o
0AT 958 - {aX‘g (ts) X () + axs (t ) X (tz)(

oz at, (UT1)
E
3% (7,) X2 (t) AT 1058

-

where use is made of Eqs. (727), (728), (735), and (736).
For one-way doppler or angular observables, there are
only two participants and the terms containing the factor
0z/0%% (t,) are omitted.

3. Parameters affecting (UTC — ST) time transforma-
tion: a, b, and ¢. The transformation from station time ST
at the receiving station to UTC is given by

(UTC - ST) =ap + bRt + CRt2 (738)
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with respect to ATigss and Afcesium and solving simul-
taneously for the partial derivatives of ¢, (ET) and ¢, (UT1)
with respect to AT g55 and Afcesium gives

ot (ET) 1 ot; (ET)
0AT 155 l:l <ﬁ2 + 23)] 0AT 1955
A111958 -> Afcesium (733)
where
®. rlZ @ o
o= 2 [ (5) — (6] (734
and
ot (UTL) 1, .
=it (1)
o, (UTL) ()
Afeesium  9,192,631,770
1., — 252,460,800
ot i) 9,192,631,770 (736)

where terms of order (v/c)? or terms having that magni-
tude have been ignored in Eq. (733).

Using the above partial derivatives, the partial deriva-
tive of a 2-way or 3-way doppler observable with respect
to a variation of AT g55 O Afcesium in the light time solu-
tion is:

ﬁ) * axz % (tl)[ ~Ga ;23)]} o

AT'1958 - Afcesium (737)

where the coefficients az, b, and c are specified by time
block (the subscript R denoting the receiving station for
the observable), and the argument ¢ is seconds past the
start of the time block.

The values of ag, by, and ¢y affect the transformation
from the data time tag f; (ST) to all other time scales
equally, and hence also affect the values of £, and ¢, from
the light time solution. From Egs. (353), (354), (725), (728),
and (738), the derivative of 2-way or 3-way doppler ob-
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servables with respect to a variation of ay, in the light time
solution is given by

0z 0% 0z [ 1"23
Pan 9K () TRy X + X (7 Xz () (1"‘0‘)

0z
e 0X5 (1) Xi(t) [

For 1-way doppler or angular observables, omit the last
term. For all doppler and angular observables,

— S lath) | )

0z 0z
577; = '5;1‘; ts (740)
and
(74 0z
-EE— oaz # <741)

where #; is the reception time of the signal measured in
seconds past the start of the current time block for az, by,
and cp.

E. Partial Derivatives of Deoppler and Angular
Observables With Respeci to Parameter Vecior,
Holding State Vectors Fixed

This section gives the partial derivatives indicated on
line 5 of Eq. (664). They are the partial derivatives of
doppler and angular observables with respect to the
parameters that affect the data directly, holding the state
vectors of each participant constant. The parameters in

this category that significantly affect the observables are.

the speed of light ¢ and the polynomial coefficients b and ¢
of (UTC - ST) appearing in the doppler formulation,
the polynomial coeficients Afz,, fr,, and fr, of the 1-way
doppler transmitter frequency, the small rotations 7, ¢,
or 7, €, ¢ of the reference coordinate system at the tracking
station for angular observables, and the parameter y of
the Brans-Dicke theory of relativity.

The unit vectors P, Q, E to which the angles HA, § are
referenced, and N, E, Z to which o, y; X,Y; and X', Y’ are
referenced, are functions of the station coordinates. How-
ever, for a 100-m change in station location, the maximum
change in orientation of any of these unit vectors is only
3 arc seconds, which is less than the 7- to 11-arc-second
accuracy of directly observed angular position. Thus, the
partial derivatives of angular observables with respect to
this particular effect of change in station coordinates are
ignored.
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1. Speed of light c. Doppler observables are computed
from Eqgs. (302), (308), (309), (310), (343), (344), (371), and
(372) and associated equations of Section VIIL. The speed
of light ¢ appears explicitly in the latter four expressions,
which may be written as

Fe\_Di, D,

(1—FT>— =+ (742)
Fs\"_D. D,

(1—FT) =24 D (743)

The derivative of a doppler observable z with respect to ¢
appearing explicitly in the formulation is given approxi-
mately by

[zd Cs D, T3 D1 D,
& —7[( +2 >+24( +2 )] (744)
where C, is defined after Eq. (673).

2. Polynomial coefficients b and ¢ of (UTC — ST).
The polynomial coefficients by and ¢z used to compute
UTC — ST at the receiving station at t, affect the fac-
tor F, of 1-way doppler and the factor F of 2-way and
3-way doppler. The polynomial coefficients by and cr
used to compute UTC — ST at the transmitting station
at ¢, also affect the factor F. From Egs. (297), (306), and
(308-310), the partial derivatives of l1-way, 2-way, or
3-way doppler observables (denoted as z) with respect to
by and ¢z used at t; (and appearing explicitly in the
formulation) are

02 Fy

o=~ O 1 (1 7) |
0z 0z

aon &) 25 3 (2 (746)

where the reception time #; is expressed as seconds past
the start of the time block for a, b, and ¢ used at ¢,. The
partial derivatives of 2-way or 3-way doppler with respect
to by and cr used at #, (and appearing explicitly in the
formulation) are

5535“1—) = C, [1 - (1 - —?—’TEY] (747)

0z 0z
= 2t
aCT (tl) : abr (t1)

(748)
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where the transmission time #, is expressed as seconds past
the start of the time block for a, b, and ¢ used at #,.

For 2-way doppler, the transmitting station is also the
receiving station and the same set of coefficients ¢, b, and ¢
is usually used at ¢; and ¢,. For this case, by, (£;) is the same
parameter as by (&;) and 0F2/0b is the sum of Egs. (745)
and (747), which is zero. However, from Egs. (746) and
(748), 0F2/9c 0.

3. Polynomial coefficients Afr, fr,, and fr, of I-way
doppler transmitter frequency. The transmitter frequency
for 1-way doppler is represented by Eq. (277), where the
solve-for coefficients Afr, fr,, and fr, are specified by time
block. From Egs. (277) and (308), the partial derivatives
of 1-way doppler (F1) with respect to the specific coefli-
cients used to compute the observable are

oF1 _f+ _ ErY
5fr, C, [1 (1 FT) ] (749)
oF1 oF1
Efz'—l = (ty — 1) YV ) (750)
oF1 , OF1 (751)

'aﬁz—:(tz_to) aFn,

where t, and #, are defined after Eq. (277).

4. Rotations v/, €, {’ or 7, €, { of reference coordinate
system for angular observables. Eqs. (437), (439) and
(443-448) give corrections to the computed values of the
directly observed angles as linear functions of the small
rotations of the reference coordinate system about each of
its three mutually perpendicular axes. The coeflicients of
the rotations in each equation are the partial derivatives
of the angular observable with respect to the rotations
affecting it.

5. Parameter y of the Brans—-Dicke theory of relativity.
From Egs. (308-310), (343), and (344), the partial deriva-
tive of a doppler observable with respect to y appearing
explicitly in the formulation is given by

— = —C, % (€12 + €3) (752)

where €, is omitted for 1-way doppler.
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F. Partial Derivatives of Range Observables With
Respect to Parameter Vector

Range observables are computed from Eq. (379) of Sec-
tion IX. The partial derivative of a range observable p with
respect to the solve-for parameter vector q is the sum of
the several terms given below.

The sum of the first four terms of Eq. (379) is an
accurate expression for the round-trip ephemeris time:
s (ET) — t, (ET). The terms ry,/c and r53/c of #(ET) —
t, (ET) vary directly with q and also indirectly with the
resulting variations in %, (ET) and ¢, (ET). The partial
derivative of p with respect to g due to both of these
effects is given by

% _ 3 (ET)
e = —F5 (753)

where 8¢, (ET)/0q is computed from Eqs. (665-667), (671),
and (672).

The speed of light ¢ affects the solution of the light time
problem for the epochs of participation and hence affects
line 1 of Eq. (379) which represents ¢, (ET) — ¢, (ET). It
also appears explicitly in line 6 of Eq. (379). However, the
variations of the terms of Eq. (379) containing the antenna,
troposphere, and ionosphere corrections due to a variation
in ¢ are negligible. Thus,

% _ _F[Btl(ET) . R ]
(4

0 oc 103¢? (754)

where 9,(ET)/oc is given by Egs. (719) and (720). For
normal values of the range bias R, the second term of
Eq. (754) is negligible.

The range observable given by Eq. (379) is the round-
trip station time #; (ST) — #, (ST) multiplied by the con-
version factor F. The reception time #; (ST) is given and
t, (ST) varies with q. In addition to the partial derivatives
above, t; (ST) varies with variations in ATs55, Afsesium, and
the polynomial coefficients a, b, and ¢ of (UTC — ST) in
the light time solution. The variations of #; (A1), #, (UTL1),
t, (UTC), and ¢ (ST) due to variations of ATy e and
Afcesium in the light time solution are identical. Hence,
from Egs. (735) and (736),

ot (ST 1, o
O L

aA'1'11958 - (755)
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ot, (ST) _
aAfcesium -

(t: — t)
9,192,631,770

t; — 252,460,800
9,192,631,770

1, .
= (o #) (756)

From Egs. (94) and (354), the partial derivatives of
t; (ST) with respect to the polynomial coefficients a, b,
and ¢ of (UTC ~ ST) used at #; in the light time solution
are given by

0 N P -
G PR V) IR
el —a[1-LGuth0| (o)

where t; is the reception time of the signal measured in
seconds past the start of the time block for g, b, and ¢ con-
taining £;. Since

t,(ST) = ¢, (ET) — (ET — Al),, — (Al — UTC),,

~ (UTC — ST),, (760)

the partial derivatives of ¢, (ST) with respect to the poly-
nomial coefficients a, b, and ¢ used at ¢, in the light time
solution are given by

at, (ST) _
ey = L (761)
—a;;,(z;l;) — ¢, (762)
a;;((g) S (763)

where #, is the transmission time of the signal measured
in seconds past the start of the time block for @, b, and ¢
containing ¢,. In general, £, and ¢, will fall within the same
time block, so that the partial derivatives given by
Egs. (757-759) are associated with the same parameters
as those in Eqgs. (761-763).
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Letting p; == AT 1558, Afcesium, OF @, b, and ¢ used at #;
and £, 9p/dp; due to a variation of p; in the time trans-
formations of the light time solution is given by

—_— — F ——=

Bpi = Ep,- (764)

where ot, (ST)/dp; is given by Egs. (755-759) and (761-
763).

The partial derivative of p with respect to R, is given by

o F
oR. 10%¢

(765)

The partial derivative of p with respect to the parameter
y of the Brans-Dicke theory of relativity appearing ex-
plicitly in Eq. (379) is

(ry + 1y 4+ 145)
(ry + 1y — 1y5)

@=F%§-[1n +In

(r: + 15 + rzs)]
oy

(ry + 15— 135)
(766)

The partial derivative 0p/dq for range observables is
computed as the sum of the terms given above, where each
term 9p/9q; must be placed in the proper column of 3p/2q.

G. Partial Derivatives of Differenced-Range Doppler
Observables With Respect to Parameter Vector

From Egs. (484-486), the partial derivatives of 1-way,
2-way, and 3-way differenced-range doppler observables
with respect to the estimated parameter vector g are
given by

OFl_  GCofyo (%1, _ Ops,

oq  T.(computed) ( oq oq (767)
EF_% o Csfq (tl) apze _ ap28>

9q  T.(computed) ( g oq (768)
9F3 _ Cify(t) Ops, _aﬁs_s>

g  T.(computed) ( ogq oq (769)

Thus, the partial derivative of a differenced-range doppler
observable with respect to q is computed from the differ-
ence of the partial derivatives of the two range observ-
ables with respect to . The subscripts ¢ and s denote the
range observables whose reception times are the end and
start, respectively, of the count interval T,. The partial
derivatives of F1 with respect to Afr,, fr,, and fr, appear-
ing in the second term of Eq. (484) and in f/c in the first
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term must be added to Eq. (767). They are given by
Egs. (749-751) with the term [1 — (Fr/Fr)]* replaced by
[(ps, — p1,)/T (computed)].

The partial derivatives of the DPODP 2-way range ob-
servables with respect to g (excluding R.) are given by
Egs. (753-759), (761-764), and (766). These equations are
used to compute the partial derivatives of p,, and p,, with
respect to g in Eq. (768); however, from Egs. (379) and
(469), the factor F in Egs. (753), (754), (764), and (766)
must be set equal to unity.

These equations are also used to compute the partial
derivatives of p;, and p;, with respect to q in Eq. (769).
However, it must be remembered that the coefficients a, b,
and ¢ used at £, are not the same parameters as those used
at t,; for two-way range, the same parameters are usually
used at both £, and %,.

In order to compute the partial derivatives of p;, and p,,
with respect to q in Eq. (767), the following additional
changes are necessary. In Eq. (753), 9, (ET)/0q com-
puted from Eqs. (671) and (672) should be replaced by
ot (ET)/oq from Eq. (671). Similarly, in Eq. (754),
ot, (ET)/0c computed from Egs. (719) and (720) should
be replaced by 3, (ET)/dc from Eq. (719); also, set R, = 0.
In Egs. (755) and (756), #*, should be deleted. Also in
Eq. (756), replace ¢, by t,. Similarly, #,, should be deleted
in Egs. (757-759). Equations (761-763) do not apply for
p1. Thus, Eq. (764) is used to compute partial derivatives
of p, with respect to AT;g5s, Afcesium, and a, b, and ¢ used
at ¢,. In Eq. (766), the first natural logarithm term should
be deleted.

The principal terms of 9p; /0q and 9p;,/0q (where
i=1, 2, or 3) in Egs. (767-769) are computed from
Eq. (753), which contains terms of relative order (v/c)°
and (v/c)!, where v is the tracking-station-to-spacecraft
range-rate. Since v/c =~ 104, and terms of relative order
(v/c)? have been ignored, 9p; /3q and 9p;, /dq are accurate
to about eight significant figures.

Let N,, N,, and N, denote the number of leading digits
of the (v/c)°, (v/c)*, and the omitted (v/c)? terms, respec-
tively, of 9p;_/oq which are identical to the corresponding
terms of 9p; /0q. Then, on the Univac 1108 computer,
which has a double-precision word length of 18 decimal
digits, the (v/c)°, (v/c)*, and (v/c)? terms of 8p;_/dg minus
those of 9p;,/0q will contribute 18 — N,, 14 — N;, and
10 — N, significant digits, respectively, to the partial
derivatives of differenced-range doppler observables with
respect to ¢ (denoted as 9z/9q) computed from Egs. (767-
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769). Since the (v/c)? terms are omitted, 9z/0q will be
accurate to (18 — N,) — (10 — N;) or 8 + N, — N, deci-
mal digits.

When the light time solutions for p;_ and p;, are similar,
the (v/c)°, (v/c)*, and (v/c)? terms of 3p; /0q will be similar
to those of 9p;,/0q; the parameters No, N, and N, will be
nonzero and should be approximately equal to each other.
Hence, 8 + N, — N, =~ 8 and the partial derivatives of
differenced-range doppler observables with respect to g
computed from Eqs. (767-769) should be accurate to
approximately the 8-decimal-digit accuracy of 9p;,/9q and
api s / aq

However, in order to obtain this accuracy, no more than
the first 10 digits of 0p;,/0q may equal those of 9p;,/dq;
that is, N, must not exceed 10. In order to obtain this much
cancellation, the count time T, would have to be 0.01 s or
smaller, which is an order of magnitude below the prob-
able lower limit of 0.1 s for usable count times.

The probable accuracy of 8 decimal digits (or close to
it) for the partial derivatives of differenced-range doppler
observables with respect to q compares favorably with
the accuracy of the integrated doppler partial derivatives:
8 decimal digits in heliocentric cruise and 4 decimal digits
near earth (see Subsection XIV-B-1).

XV. Normal-Equations Form of Estimation
Formulas

A. Introduction

This section gives the normal-equations form of the esti-
mation formulas which yield the estimate of the parameter
vector g and the statistics of the estimate; namely, the
covariance matrix for q. This formulation was used in the
original version of the DPODP. However, it has been re-
placed by the square-root form of the normal equations
in the latest version of the program. The square-root
formulation is theoretically equivalent to the normal-
equations formulation but is numerically superior; it is
documented in Section XVI.

The estimate for ¢ minimizes the sum of weighted
squares of residual errors between observed and com-
puted quantities where a priori parameter estimates are
treated as observed quantities. The parameter vector g is
partitioned into a “solve-for” parameter vector x and a
“consider” parameter vector y. The values of the solve-for
parameters are adjusted to minimize the sum of squares.
The a priori estimates of the consider parameters are not

109



changed; however, the effects of errors in the consider
parameters on the estimates of the solve-for parameters
are “considered” when computing the covariance matrix
for the solve-for parameters.

A given quantity of tracking data can be processed in
one batch or divided into a number of sub-batches which
are processed sequentially. That is, processing of the first
batch yields an estimate of the parameter vector q and a
corresponding covariance matrix, which are used as a
priori information for processing the second batch, etc.
As currently programmed, -processing of each sub-batch
requires a separate run of the DPODP. The one-batch
solution is identical to the multiple sub-batch solution
using the formulation of this section (or the equivalent
formulation of Section XVI).

When the a priori covariance matrix is not obtained
from a previous reduction of tracking data, the a priori
cross-covariance between solve-for and consider param-
eters (T,,) must be zero. After a batch of tracking data is
processed, the cross-covariance between the estimate of
the solve-for parameters and the consider parameters is
computed and used as a priori information for processing
the next batch of data.

There may be functional relations (constraints) between
the members of q. These constraints may be applied by
an exact procedure or an inexact procedure. For the exact
treatment, the estimates of the parameters related by the
constraint are required to satisfy the constraint. For the
inexact treatment, the estimates of the parameters related
by the constraint are allowed to deviate from values that
would satisfy the constraint, This deviation contributes a
weighted residual error to the sum of squares, which is
minimized by the parameter estimate.

The formulation is given for mapping the covariance
matrix from the injection epoch to any other epoch. The
parameter vector corresponding to the mapped covariance
matrix is g, with the injection position and velocity com-
ponents (referred to a selected body, not necessarily the
center of integration) replaced by the position and veloc-
ity components relative to the center of integration or any
other specified body (planet, moon, or sun) at the map
time. Frequently, the covariance matrix computed after
processing a batch of data is mapped to a new epoch and
used as a priori information for processing the next batch
of data. The position and velocity components of the
spacecraft at the new epoch (the solve-for injection condi-
tions for processing the next batch of data) may be re-
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ferred to a different body than that used for the previous
batch of data.

The formulation of this section is a variation of the
formulation originally derived by J. D. Anderson and
used in the Single-Precision Orbit Determination Pro-
gram (SPODP)32. The DPODP formulation was obtained
from Anderson’s formulation by adding the a priori cor-
relation between solve-for and consider parameters and a
method of treating inéxact constraints. The formulation of
this section includes a modification recently obtained by
C. F. Peters® and is equivalent to the square-root formu-
lation of Section XVI. The DPODP formulation does not
contain Peters” modification and is documented in Ref. 62;
it follows from the derivation of this section if the zero
residual (¥ — y) is deleted from the residual vector R given
by Eq. (780).

Peters’ modification does not affect the parameter esti-
mate and associated covariance matrix obtained from
processing one batch of tracking data if T,, = 0. However,
his modification is required in order to obtain the correct
estimate when processing the tracking data sequentially
in batches.

B. Categorization of Parameters and Consiraints

The parameter vector q consists of those parameters
required to compute observable quantities; it is composed
of three subvectors:

(770)

where

x = solve-for parameters: those parameters whose esti-
mates are obtained from the least squares fit

y = “consider” parameters: those whose a priori esti-
mates are not corrected, but whose errors are
considered when computing the covariance matrix
for g

s = exactly “constrained” parameters: parameters that
are functionally related to the (x|y) parameters;
one parameter from each exact constraint is placed
ins

32A simplified version of his formulation without consider param-
eters and exact constraints is given in Ref. 61.

s3Peters, C. F., The Consider Option Reconsidered, JPL: Section 391
Technical Memorandum 86 (JPL Internal Report), Mar. 27, 1970.
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The parameter estimation formulation allows con-
straints (functional relations between the parameters) to
be treated as exact or inexact. A constraint may be repre-
sented by

fi(x,y,s,Ni)=0 i:1,2, et ,n (771)
where N; = vector of constants which appear in the ith
constraint. A constraint is considered to be exact or in-
exact as N; is considered to be exact or inexact. Estimates
for parameters related by a constraint that is considered
to be exact are required to satisfy the constraint. Esti-
mates for parameters related by a constraint that is con-
sidered to be inexact are allowed to deviate from values
that would satisfy the constraint.

One parameter from each exact constraint is designated
as a constrained parameter and is placed in s. The exactly
constrained parameter vector is given by

i $1 (X: Y) ]
82. (X, Y)

s=s5(xy) = (772)

5 (X, )

5 (%,7)

L. =

where s; (%, y) represents the solution of the ith exact con-
straint for the constrained parameter as a function of the
estimates of the related parameters of the constraint. The
derivative of s with respect to (x | ¥)is denoted by

[9s,  0sy i Os 0s; ]
Pl ax,.ia_yj’aﬁ
[ES_ : _'f’_s_]= : !
ox ! 9y . :
On ., OSn | Osn  Dsu
_axi 0%n, : ay1 ay,,,_
=[S, E S,] (773)

The ith exact constraint may be specified as either of the
following;:

(1) The functional relation s; = s; (x,y), in which case
the @ priori value of s; is s; (%, ), where X is the
a priori estimate of x.

(2) The derivative of the consirained parameter with
respect to each related parameter of the constraint;
i.e., specifying the ith row of Eq. (773). In this case,
the a priori value of s; must be given.
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As opposed to the exact treatment of constraints, all
parameters related by an inexact constraint are members
of (x!y). One parameter from each inexact constraint is
designated a constrained parameter and will have a “com-
puted” value and an “observed” value. The computed
value is the estimate for the parameter; the observed
value is calculated from the constraint as a function of
the estimates of the related parameters. Since parameter
estimates are obtained by minimizing weighted squares
of residual errors between observed and computed quan-
tities, the degree to which each inexact constraint is satis-
fied will depend upon the weight applied to the constraint
(see Section XV-C).

The observed inexactly constrained parameter vector is
given by

C1 (X, Y)
Ca (X, Y)

c(xy) = (774)

c; (x,y)

_c;,, (%)

where c¢; (x,y) represents the solution of the ith inexact
constraining equation for the constrained parameter as a
function of the estimates of the related parameters of the
constraint. For a given constraint, the functions s; (x,y) of
Eq. (772) and ¢; (x,y) of Eq. (774) are the same. The sym-
bol used depends on whether the constraint is treated as
exact or inexact.

The computed inexactly constrained parameter vector
is given by

-C§x,y) ]
ch,y)

c(®y) =

~muog[ 5] o

ng.y)

ch,y)

L. a

The element of the ith row of [D; | D;] corresponding to
the member of (x ! y) which is the constrained parameter
for the ith inexact constraint is unity, and the remaining
elements of that row are zero.
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The derivative of ¢(x,y) with respect to (x,y) is
denoted by

e®xy) 1 &N _1p
[ 20 |~ p.ip) (e
From Eq. (775),
oelxy) ! delxy) _ R

The differences of the matrices in Egs. (776) and (777) are
denoted by

AD, =D, — D, (778)

AD, =Dy, — D, (779)

There are two constraints stored within the DPODP:
they are the so-called solar and lunar constraints described
in Subsection IV-B-2. The user specifies whether each of
these constraints is to be applied, and also specifies the
exact or inexact treatment. The user may also apply exact
constraints by supplying the information listed under
item 2 after Eq. (773).

C. Error Function

Let R denote a column vector containing all of the
observed minus computed residuals associated with the
processing of one batch of data:

[ E-z ]
X—X
R=|""_T (780)
S A A
e (x,y) — cton

where

£ = column vector of observables (doppler, range,
angles, etc.)

Z = z(X,¥,8) = z(x,y) = vector of computed
observables

% = column vector of a priori estimates of solve-for
parameters

¥ = column vector of a priori estimates of consider
parameters

x = column vector of estimated values of solve-for
parameters
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y = column vector of estimated values of consider
parameters

=y

In addition to the actual observed quantities which pro-
duce the residuals 2 — z, the a priori estimates of the
solve-for parameters are treated as observables and pro-
duce the residuals ¥ — x. The zero residuals ¥ — y are
retained in Eq. (780) because the estimates X and ¥ are
correlated; this will become clear below. Also, Eq. (780)
contains the residual between the “observed” and “com-
puted” values of the constrained parameter for each
inexact constraint. The sum of weighted squares of resid-
ual errors between observed and computed quantities is
given by

Q=RTW:R (781)
where the weighting matrix W7 is given by
"W 0 0 0 ]
o[ % 1T [0
Wy = e T 782
= o | F T, (782)

where

W = data weighting matrix (diagonal); the weight for
each observable is 1 divided by the input vari-
ance for the observable

T, = covariance matrix for X

Ty = covariance matrix for ¥

T,y = cross-covariance matrix for X and y

W, = diagonal weighting matrix for inexact constraints

1
........... 0
a*c: (x,y)
1
Wc = 0 0’202 (X, y) 0 . 0
1
O v veeee 0 m.’_}:)_

(753)
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where ¢%c; (%, y) is the input variance of ¢; (x, y) calculated
from the variances and covariances of the constants N;
of the ith inexact constraining equation and the a priori
estimates of x and y. In Eq. (782), the inverse of the co-
variance matrix for (X ¥) is denoted by

T |° W | Way
__________ —_— O S
T f, | | wniw,

It will be seen that only W, is required. It can be obtained
by inverting the complete covariance matrix for (X|) or
from

W, = [fw -

T T2 T7 ]

(785)

Substituting Egs. (780), (782), and (784) into Eq. (781) and
deleting all terms containing the zero residual ¥ — y gives

0=@E%—-2"W(E—2)+ ET—xTW,E—x) + [e(xy) — c=N]*W,[c(x,y) — c(&)] (786)
D. Parameter Estimation Formula
Since s = s (x,y) and y = constant, the sum of squares Q is a function of x only:
Q=0Q(x) (787)
The estimate of x is the vector that minimizes Q. If Q is a minimum,
Q_[Rw 0]
x [ax1 0%, %n | 0 (788)
From Eq. (786),
EQ_ — e A T ?E > — T — alxy)1T ac(x’Y) — ac(x’}') —
. 2 {(z )W = +E-—x)TW,+[e(x,y) —c=N]TW, - o = (789)
The partial derivative of z with respect to q is designated the A matrix:
9z 0z | 0z 1 0Z Ca
A—.a_q-— l:a s fixed :a—y- s fixed :-a—s—:lz[Am!Ay!Aa] (790)
But s = s(x, y) and hence, using Eq. (773),
% oA+ AS (791)
ax - 2 sy
Similarly (for use in computing the covariance matrix for g),
0z 709
5y = At AS, (792)
Substituting Eqs. (776-778) and (791) into Eq. (789) gives
(Z—2)TW(A; + AS,) + E— x)TW, + [e(x,y) — =N ]"W,AD, =0 (793)
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which is a row vector with the number of elements equal
to the number of solve-for parameters. Let the transpose
of this vector (a column vector) be denoted by F (x):

F(x) = (As + AS,)"W (2 — z) + W, (X — x)

+ ADIW, [e(x,y) — c®¥)] =0 (794)

The estimate of the solve-for parameter vector x must
satisfy this equation. Assuming the partial derivatives are
constant, the derivative of F (x) with respect to x is

oF (x)
ox

=F(x) = — [(A, + AS.)! W (A, + AS,) + W,
+ ADIW.AD,] (795)

Defining
J= (A, + AS8,)"W (A, + AS,) (798)
and
K =ADIW.AD, (797)
Egq. (795) becomes
F'(x) = —[J+W,+ K] (798)

The solution of Eq. (794) for the estimate of x is obtained
by using Newton-Raphson iteration:

x(H) () = {F, [X(")]}AF [x™] (799)

where x™ is the nth estimate of x, and x* is the n -+ Ist estimate. Substituting Eqs. (794) and (798) into Eq. (799)

gives the parameter estimation formula

X0 — x® = [ + W, + K] [(As + AS)T W (£ — 2 [x™,F]}+ W, [R — x] + ADI W, {c [x™,F] — cx®51}]

For exact constraints specified by a functional relation,

sfzn+1) =8 [x(n+1),‘}‘,’]

(801)

For exact constraints specified by a row of Eq. (773) and
the a priori estimate of the exactly constrained parameter,

Ssim-l) —_ Sé”) + Sa:i [X(n+1) — X('n)]

(802)

where S;, is the ith row of S,.

E. Covariance Mairix

This section gives the formulation for computation of
the covariance matrix Ty for the estimate of the parameter
vector g. Let the error in an estimate of q be denoted by

8q=| 8y (803)

where 8y = §¥, the a priori error. Then, the covariance
matrix is given by

8xdx” ': ox8yT | 8x8sT
[

_———— = —_——

1
Sysx” | 8ydy” | Syss”
1 )

Ty=28qdgT = (804)

8s8x” | ds8y” | 8s8sT
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(800)

where a bar indicates the ensemble average or expected
value of the function. This may be written as

(805)

I\TIl'\TIPs

&3 TYsy

If the true value of the solve-for parameter vector x
were substituted into the parameter estimation formula
(Eq. 800) along with true values for %, ¥, %, and the con-
stants in the inexact constraints, we would have

c [X(”),‘}."] =] c[x(")’?”]

and x™*? would equal x™, the input true value. How-

A ~ ot . A qew ror
ever, the vectors z, %, and ¥ are in error by 8%, §%, and 8¥,
and the errors in the constants of the inexact constraints
give an error in ¢ (x,y) of 8cy. Substituting the true value
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of x into Eq. (800) and using Egs. (776), (777), (779) and (792) gives an erroneous correction 8x = x™ — x™_which is

the error of the estimate:

8x = [J + W, + K1 {(A, + A,S:)T W [82 — (A, + AS,) 8F] + W, 8% + ADI W, [8cy — AD, §7]} (806)
Let
L= (A, + AS)TW (A, + A,S,) + AD?W,AD, (807)
Then
8x =[] + W, + K] [(A, + AS,)" W 82 + W, 8% — L8Y + ADT W, scy] (808)

In order to derive the submatrices of Eq. (805), the assumption is made that the data covariance matrix T, is the inverse

of the data weighting matrix:

T, = 82887 = W~

(809)

Also, from the definition of the weighting matrix W, for inexact constraints,

dcy 8¢k = W

(810)

Postmultiplying Eq. (808) by its transpose and averaging, using Egs. (809) and (810), gives

T,=[J+W,+K*[J+W,T,W,+K+ LT, LT — W,T,, L* — LTI, W,] [J + W, + K]*

From Eq. (785),

Fo=wa+T, To0

Substituting this into Eq. (811) gives

(811)

(812)

T, =[J+W,+ K"+ [] + W, + K] [W, T, T, T2, W, + LT, L* — W, T, L* — LT, W,][J] + W, + K]

Postmultiplying Eq. (808) by 8% and averaging gives

Ty =[] + W, + K] [W,T,, — LT,] (814)
Since the estimate of the consider parameters is not
changed,

-~

T, =T, (815)

The remaining submatrices of Eq. (805) are T, I'ys, and
T'ys. From Egs. (772) and (773),

8s = §,8x + S, 8y (8186)
Postmultiplying 8s by 8s” and averaging gives
Ty = §,T,S{ + S,I,87 + S,1, 87 + S, 17, ST (817)
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(813)

Postmultiplying 8x and 8y by 8s” and averaging gives

T,y = T,ST + Ty, ST (818)

Iy, = 17,87 + 1,57 (819)

The covariance matrix for q is evaluated from Eq. (805)
using the submatrices given by Eqgs. (813-815) and (817-
819).

The following paragraphs relate the various terms of
Eq. (813) for T, to the various error sources which affect
the estimates of the solve-for parameters obtained from
Eg. (800).
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If the a priori parameter estimate and covariance matrix
are not obtained by processing previous batches of data,
T,y must be zero. For this case, Eq. (785) gives

Substituting this and T, = 0 into Egs. (813) and (814)
gives

T, = [J + T2+ K]
+[J+ T + K] [LT,L7] [J + T + K]~
(820)

and

Ty=—[J+T2 +K"LT, (821)
The contributions to I'; from the information matrix J, the
a priori covariance matrix T, and the matrix K in the first
term of Eq. (820) account for errors in the tracking data
being processed, errors in the a priori parameter estimate,
and errors in the constants of the inexact constraints ap-
plied to the solution. The second term of Eq. (820) ac-
counts for the effect on the estimate of errors in the
consider parameters.

The complete expression of Eq. (820) is referred to as
the consider covariance matrix since errors in the “con-
sider” parameters are considered. The first term is referred
to as the nonconsider covariance matrix Topet

Toye = [T + T3t + K] (822)

Using Egs. (821) and (822), Eq. (820) may be expressed as

Ty = Loy, + oy T T2, (823)

For the case where the tracking data are processed
sequentially in batches, T, and T, are computed from
Egs. (813) and (814) after processing each batch of data
and are used as a priori information for processing the
next batch of data.’* It can be shown that T, and T,
obtained after processing the last batch of data are iden-
tical to the results that would be obtained from Egs. (820)
and (821) if all of the data were processed in one batch.?
The equality of Eqgs. (813) and (820) applies to each term.

340ften, I'. and T,y are mapped to a new epoch (see Section XV-F)
and then used as a priori information for the next batch of data.

35The constraint weighting matrix W. (and hence K) used to process
each batch of data is different from the matrix W, (and hence K)
required to process all of the data in one batch.
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Hence, the first term of Eq. (813) is the nonconsider
covariance matrix:
Topy = [J + W+ K] (824)
The information matrix J accounts for the errors in the
current batch of data. The matrix K accounts for errors
in the constants of the inexact constraints applied to the
processing of the current batch of data. If the current
batch contained no data, J and K would be zero and T,
would equal its @ priori value T, giving the relation
Tope = W5t (825)
Thus, the quantity W, is the inverse of the a priori
nonconsider covariance matrix. It accounts for errors in
previously reduced batches of data, errors in the constants
of the inexact constraints applied to each previous batch
reduction of data, and the input errors for the initial esti-

mates of the solve-for parameters (prior to reduction of
the first batch of data).

The second term of Eq. (813) contains a sum of four
terms. The first of these, namely W, Ty, T;'TZ, W,, ac-
counts for the effects of errors in the consider parameters
on the previous batch reductions of data. The remaining
three terms of the sum contain the matrix L and account
for the effects of errors in the consider parameters on the
reduction of the current batch of data.

Equation (813) for T, may be expressed as Eq. (823)
using Ty, given by Eq. (824) and T, given by Eq. (814).
Equation (823) also applies for the previous batch of data;
that is,

T =T, + T T2 T2,

(826)

Substituting T, from Eq. (826) into Eq. (785) for W, gives
the result that

which is identical to Eq. (825).
The sensitivity matrix S, is defined as
ox

That is, S,, is the partial derivative of the estimate of the
solve-for parameter vector with respect to the consider
parameter vector. The sensitivity matrix is a very useful
quantity since it relates errors in the consider parameters
to errors in the estimates of the solve-for parameters.
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The error 8x in the estimate of the solve-for parameter
vector is given by
8x =8, 6§+ - - - (829)
The dots represent the contributions due to errors in the
processed observables, errors in the @ priori estimates of
the solve-for parameters (uncorrelated with 8y since
T,, = 0 prior to processing observables), and errors in
the constants of the inexact constraints. Since these errors
are uncorrelated with 8y, postmultiplication of Eq. (829)
by 85" and averaging gives

Ty = Swy T y (830)
and
Sey = Ty Ty (831)
Substituting Iy, given by Eq. (814) gives
Sey =[] + W, + K} [W, T, T;* — L] (832)
KT, =0,
Sey = =[]+ T +K]"'L (833)

For a given amount of tracking data processed sequen-
tially in batches, the sensitivity matrix is computed from
Eq. (832) after processing the last batch. If this same
amount of tracking data is processed in one batch, T,, = 0
before processing data and S., is computed from Eq. (833).
It can be shown that these two sensitivity matrices are
identical.

The consider covariance matrix (Eq. 813) can be ex-
pressed as Eq. (823), which is identical to

I‘E = I‘a}Ng + (I‘W fl—ll) T"y (fi‘ll ng) (834)
Substituting Eq. (831) gives
Ty = Tay, + Sey Ty SZ, (835)

F. Mapping Covariance Matrix fo New Epoch

This section gives the formulation for mapping the
covariance matrix for the parameter vector g from the
injection epoch to any other epoch. Subsection XV.F-1
gives the mapped covariance matrix relative to the center
of integration at the map time. Subsection XV-F-2 gives
the covariance matrix relative to any specified body other
than the center of integration at the map time. There is
a slight difference in either formulation, depending on
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whether the map epoch is specified in the ET time scale
or in another time scale (Al, UTC, UTI, or ST).

1. Mapped covariance mairix relative to cenier of inte-
gration. The solve-for parameter vector g will be denoted
as q, in this section. However, for purposes of mapping
the covariance matrix to a new epoch, dividing the param-
eters into the solve-for, consider, and exactly constrained
categories is inappropriate. The appropriate categories are

X2 = spacecraft state vector (1950.0 earth equatorial
rectangular position and velocity components) at
injection epoch #, (specified in a time scale other
than ephemeris time ET) relative to a specified
body B which is not necessarily the center of inte-
gration at %,

a = all parameters that affect the spacecraft state
vector X relative to the center of integration C
(except X2)

b = all parameters that affect observables but do not
affect X

Thus, the solve-for parameter vector q, is given by

X Xz
Q=Y |=|2a (836)
s b

where the second form of the vector is obtained from the
first by reordering the elements.

The mapped parameter vector relative to the center of
integration C at the map time is denoted by g°:

(837)

where

X = spacecraft state vector relative to center of integra-
tion C at map time.

The mapped covariance matrix T'¢ relative to the center
of integration at the map time corresponds to the mapped
parameter vector g°.
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The injection covariance matrix is given by Eq. (805).
Reordering the rows and columns and partitioning ac-
cording to the second vector of Eq. (836) gives, suppress-
ing the subscript and superscript on X&,

Ty I: T'xa i Ty
XX LT

Too=| T%! Tu ! Tu (838)
Th 1 Th 1 Ty

The state vector of the spacecraft relative to the center
of integration is a function of ET and the parameter vec-
tor Go:

X =X(ET, q) (839)
The variation in X at an ET epoch is given by
X =USXE+Véa (840)

where the U and V matrices are obtained from the solu-
tion of the variational equations (see Section XIII-A). If
the epoch is specified in a time scale other than ET (ie.,
Al, UTC, UT], or ST), the variation in X is

$X = USXZ + V sa + X SET (841)
where, from Eq. (93),
t — 252,460,800
SET =3 (AT1958) _ W ) (Afcesium) (842)

Thus, Eq. (841) may be written as
3X =US8X2 +V*3a (843)

where V* is the V matrix with the ATys column incre-
mented by

X
and the Afcesium column incremented by

t — 952,460,800 -
~ 79,192,631,770

where X is evaluated at the map epoch .

Using Eq. (840), the variation of q° at an ET map epoch
due to a variation in g, is given by

$X Ui,Vv.o 8XE
———— b} e — | PR | RO R A
8q0= da = 0 : I : ¢ da EMSqo
—_———— ] ] -=== - o me [ [ [
b 0! 0 ' I b

(844)

where 0 and I represent null and identity matrices. The
variation of q” at a map epoch specified in a time scale
other than ET is given by Eq. (844) with V replaced by V*.

Using Eq. (844), the mapped covariance matrix for q°
is given by

Substituting Eq. (838) and M from Eq. (844) into Eq. (845) gives

UryU” + VIZ U + UTxV7 + VI V?

TZ,UT + IL,V7

This matrix may be simplified by using the following combined submatrices of Eq. (838):

Tra== [an ! PXb]

T, ap = [ra :I‘ab]

iig

TY = 8q° [8¢°]" = M T, M"” (845)
li UTy, + VT, i UTx + VTa
_____ e S
: T : Tap (846)
_____ L e e e e ———
E ™ Ty
(847)
(848)
I‘a ; I‘ab
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With these definitions, Eq. (846) simplifies to

This equation gives the mapped covariance matrix relative
to the center of integration for an ET map epoch. If the
map epoch is specified in any other time scale, Eq. (850)
is used with the V matrix replaced by the V* matrix.

2. Mapped covariance mairix relative to body other
than center of integration. The mapped parameter vector
relative to the center of integration at the map time is
given by Eq. (837). The mapped parameter vector rela-
tive to a body R other than the center of integration at
the map time is given by

XE X —X¢
¢°=| a |=| a (851)
b b

where

X® = spacecraft state vector relative to body R at map
time

X¢ = state vector of body R relative to center of inte-
gration C at map time

The variation in X is given by Eq. (840) for an ET map
epoch and by Eq. (841) or (843) for 2 non-ET map epoch
(epoch specified in the A1, UTC, UT], or ST time scale).
Since ET is the independent variable for the spacecraft
ephemeris and the precomputed n-body ephemerides, the
state vector X§ is a function of ET and the dynamic
parameters .a:

X¢ =X¢ (ET, a) (852)
However, the dependence upon a is limited to the refer-
ence parameters: Ag, Ry, E for each precomputed ephem-
eris, pr and py. The variation in X at an ET map epoch
is given by*®

.

SKO —
3X¢ 38

3a (853)

36The partial derivatives are computed as indicated in Subsection
XIII-D-2,
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o UTLU?T + VIL,U? + UTy V7T + VI V? iUI‘x, @+ Vga
[Urx, ab + VPa, ab]T :

(850)
: 11ab, ab
For a non-ET map epoch,
X¢ >
3X¢ = 8 8a + XS 8ET (854)

where SET is given by Eq. (842). Thus, for an ET map
epoch,

C
X = 8X — 6XY = U sXE + (V - B;R) sa  (855)
For a non-ET map epoch,
(%
§X® = U sX3 + (V - aax")sa
a
+ (X — X9) SET (856)

where SET is given by Eq. (842).

A comparison of Eq. (855) to Eq. (840) and of Eq. (856)
to Egs. (841) and (843) shows that the mapped covariance
matrix relative to a body R other than the center of inte-
gration C at the map time can be computed from Eq. (850)
by using a modified V matrix. For an ET map epoch, the
matrix V is replaced by

_ 9Xg

v o0a

For a non-ET map epoch, the matrix V is replaced by

_ axg

v da

where V* is computed as indicated after Eq. (843) except
that X is replaced by X — X¢ =Xg , — X§ = X% ;, where
S/C refers to the spacecraft.
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XVIi. Square-Root Form of Estimation Formulas
A, Introduciion

This section gives the square-root formulation of the
estimation formulas which yield the estimate of the param-
eter vector g and the statistics of the estimate; namely, the
covariance matrix for q. The square-root formulation is
used in the latest version of the DPODP; it replaces the
normal-equations formulation of the estimation formulas
(Section XV) used in the original version of the program.

The square-root formulation is theoretically equivalent
to the normal-equations method but is numerically supe-
rior. The normal-equations formulation requires the in-
verse of the normal matrix ATWA (see Section XV), which
is frequently ill-conditioned and influenced greatly by
round-off errors. Instead of forming ATWA, the square-
root formulation utilizes Householder transformations to
convert the A matrix to the triangular matrix R, whose
order is the same as that of A”TWA. To obtain the param-
eter estimate requires the inversion of R rather than that
of ATWA. Since the condition number?” of R is the square
root of the condition number of ATWA, the inverse of R
can be obtained with less numerical error than the in-
verse of ATWA. This is the primary advantage of the
square-root formulation.

The superior numerical techniques of the square-root
formulation were first applied to the linear least-squares
problem by R. J. Hanson and C. L. Lawson® (Ref. 1).
Using these techniques, the DPODP square root formula-
tion was written by P. Dyer® (Ref. 63); however, many of
the details are due to T. Starbird.*®

Section XV-A applies also to this section. However, the
application of constraints to the parameter estimate is
limited to the “solar” and “lunar” constraints (described
in Subsection IV-B-2), treated as exact constraints. The
treatment of these constraints as inexact relations between
the estimated parameters has been discontinued along
with the user input differential exact constraints (see
item 2 after Eq. 773).

Section XVI-B-1 gives the derivation of the parameter
estimation formula, which requires the inverse of the
triangular matrix R. Subsection XVI-B-2 describes the

37Ratio of largest to smallest singular value.

38JPL, Computation and Analysis Section.,

3Formerly, JPL: Tracking and Orbit Determination Section.
40Formerly, JPL Flight Operations and DSN Programming Section.

§20

singular-value decomposition method of inverting R and
also the alternative “mass below the diagonal” technique.
Also, the partial-step algorithm for obtaining the param-
eter estimate in the presence of significant nonlinearities
is given; this algorithm was originated by D. Boggs.** The
formulation for the covariance matrix of the parameter
estimate is given in Section XVI-C. Section XVI-D gives
the formulation for mapping the square root of the co-
variance matrix (or its inverse) from the injection epoch
to any other epoch.

B. Parameter Estimation Formula

The parameter estimation formula is derived in Sub-
section XVI-B-1. Three different numerical techniques for
evaluating this equation are given in Subsection XVI-B-2.

1. Equations. The parameter vector q is given by

[

(857)

where

x = solve-for parameter vector. The estimates of these
parameters are obtained from the least-squares fit.

y = “consider” parameter vector. The a priori estimates
of these parameters are not corrected. However,
the errors in these parameters are considered when
computing the covariance matrix for the solve-for
parameters.

The user may specify that the parameter estimate must
satisfy the solar constraint (Eq. 104) and/or the lunar con-
straint (Eq. 107). The solar constraint relates the gravita-
tional constant of the sun ugy and the scaling factor Az for
the heliocentric ephemerides of the planets and the earth—
moon barycenter. The lunar constraint relates the gravita-
tional constants of the earth and moon, uz and uy, and the
scaling factor Ry for the geocentric lunar ephemeris.

If either of these constraints is applied, the estimates
of the parameters related by the constraint must satisfy

41Boggs, D., “The Partial-Step Estimation Algorithms and Their
Application to Mariner *717, pp. 4-74 to 4-90 of Project Document
810-33, Preliminary Orbit Determination Strategy and Accuracy,
Mariner Mars 1971, Ed. by S. K. Wong and G. W. Reynolds (JPL
Internal Report), Aug. 15, 1970.
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the constraint. This is accomplished by designating one
parameter from each applied constraint as a constrained
parameter which is placed in the exactly constrained pa-
rameter vector s given by Eq. (772). In the square-root
formulation, the number n of exactly constrained param-
eters can be 0, 1, or 2. The quantity s; (x, y) represents the
solution of the ith exact constraint for the estimate of the
constrained parameter as a function of the estimates of
the related parameters of the constraint. If the lunar con-
straint is labeled as the first constraint and if Ry is desig-
nated as the constrained parameter, then s, (x,y) is the
estimate of Ry, which is equal to the right-hand side of
Eq. (107) computed from the estimates of pp and pur,
which are members of q given by Eq. (857).

Application of an exact constraint replaces the con-
strained parameter, wherever it appears in the DPODP
formulation, by a function of the related parameters of
the constraint, namely s; (x,y). For instance, applica-
tion of the lunar constraint with Ry as the constrained
parameter replaces Rg by 86.3135017 (uz -+ ua)%. Hence,
specification of the constraints to be applied and the cor-
responding constrained parameters effectively eliminates
the constrained parameters from the formulation. As a
result, the constrained parameters are not included in the
parameter vector g given by Eq. (857), and the elements
of g are independent parameters.

Let R denote a column vector containing all of the
observed minus computed residuals associated with the
processing of one batch of data:

A
Z-—z

R=|%—x (858)
Y-y

where
% = column vector of observables (doppler, range,
angles, etc.)
z = z(x,y) = column vector of computed observables

% = column vector of a priori estimates of solve-for
parameters

¥ = column vector of a priori estimates of consider
parameters

x = column vector of estimated values of solve-for
parameters

y = column vector of estimated values of consider
parameters =¥
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The zero residual vector ¥ — y is retained because the
estimates ¥ and ¥ are correlated. The sum of weighted
squares of residual errors between observed and com-
puted quantities is given by

Q=R'W:R (859)
The weighting matrix Wy is given by
W0
WT = -

0 Py
W 0 0

=| 0 [T"w ﬁy:l‘l
R
W 0 0

= 0 w, W, (860)
Lo wr W,

where

W = data weighting matrix (diagonal); the weight for
each observable is 1 divided by the input variance
for the observable

T» = covariance matrix for ¥
T, = covariance matrix for ¥

Ty, = cross-covariance matrix for X and ¥

When the a priori covariance matrix T, is not obtained
from a previous reduction of tracking data, T,, must be
zero. The matrix W, is given by Eq. (785), repeated here:
The sum of squares Q given by Eq. (859) is a function of

the solve-for parameter vector x; the estimate of x is that
vector which minimizes Q.

Before proceeding, the square root of a matrix must be
defined. The relation between a symmetric positive-
definite matrix M and its square root M*% is

M = (M%)* M* (862)
The square root is not unique; the form used in the
DPODP is upper triangular. The square root of the in-
verse is denoted as

MY = (M-1)% (863)
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Also,

(M=% = [(M%)2]7 = [(M#)T] (864)
The latter form follows since the transpose and inverse
can always be interchanged.

Since the parameter estimate minimizes the sum of
squares Q, it also minimizes the square root of Q. From
Egs. (859) and (862),

Q = (WER)"(W%R) = | WER|? (865)

where the bars indicate the magnitude of the vector
W% R. Hence,
0% = |[W%R| (866)

From the first form of Eq. (860), the square root of Wy is
given by

W4 0
m[Tis] e
Using the partitioned form of T, from Eq. (860)
. W§ 1 — WHT,, T
o= | T F L2 Wy
T ] (868)

where W, is computed from T, T, and T, using Eq. (861).

If the a priori parameter estimate is obtained from the
processing of previous batches of data, T, and its sub-
matrices Ty, Tz, and T, are obtained by mapping the co-
variance matrix obtained from processing the last batch
of data to the “injection” epoch (the epoch for the solve-
for spacecraft state vector) for the current batch of data.
If there is no previous data, T, and T, are input and T,
must be zero. In either case, W, could be computed from
Eq. (861) and substituted into Eq. (868) to give ;% Then
W is given by Eq. (867).

In the equivalent formulation of Section XV, the quan-
tity W, was identified as the inverse of the a priori non-
consider covariance matrix:

W, =Tz

ZNe

(869)
where, from Eq. (826),
f”ﬂzvt,' = f‘” -

T, 1T (870)
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Substituting Eq. (869) into Eq. (868) gives

p -% & ~—1
Fyp = l:_lfw_zv_q TTET T :l (871)

The DPODP computes W% from Egs. (867) and (871),
using the input quantities I‘,NO, Ty, and T,. However, the
available quantities obtained from processing previous
batches of data are T,, T,,, and T,. The required input
Ty can be computed extemal to the DPODP, from
Eq. (870). ¥ T, =0, Ty, = T,, and no extra calculation
is required.

The program should be modified so that T, 'I“'m,, and T,
are input and W is computed from Egs. (861), (868), and
(867). Furthermore, the option should be added for map-
ping T% obtained from processing a previous batch of
data to the “injection” epoch for the current batch of data
and putting this quantity directly into Eq. (867). The for-
mulation for mapping T:*% is included in Section XVI-D.

Processing of a batch of data requires several iterations
of the orbit determination process. For the first itera-
tion, the initial estimate of the solve-for parameter vector
x is usually taken to be the a priori estimate X. Given
x = ¥ and the a priori estimate of the consider parameter
vector ¥ (which is not corrected), the orbit determination
process consists of computing the spacecraft ephemeris,
the vector z of computed observables, the observed minus
computed residual vector £ — z, and the partial deriva-
tives of z with respect to g.

Substituting these quantities along with the data weight-
ing matrix W, the a priori estimate X, and the a priori
covariance matrix T, into the parameter estimation for-
mula (to be developed below) gives the differential cor-
rection 8x to the solve-for parameter vector. Because z
does not vary linearly with x, the orbit determination
process is repeated using x + 8x as the initial estimate
of the solve-for parameter vector. After several iterations,
the estimate for x will converge and Q% given by Eq. (866)
(or Q given by Eq. 859) will be minimized.

Let g given by Eq. (857) be the parameter estimate
at the beginning of an iteration of the orbit determination
process and R(q) from Eq. (858) be the corresponding
residual vector. The differential correction produced by
the iteration is

(872)
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The correction 8y = 0 since the e priori estimate is not
corrected. The expected residual after correcting g is
R (q) + (dR/3q) 8q. From Eq. (858), dR/9q = — Ay where

2] [z &
oq ox | Oy
— | -~
A=l oo |=] 110 (873)
______ l._—-—.—
oy 0 E I
L% 1 L | A

The partial derivatives 0z/0x and 3z/0y account for the
variations in the exactly constrained parameter vector
s = s (x,y) with variations in x and y. However, the
DPODP computes the partial derivatives of the observ-
ables with respect to the solve-for, consider, and exactly
constrained parameters treated as independent variables:

o e = 73
2 =a (876)
From Egs. (772) and (773),
== (877)
%Esy (878)

In terms of the quantities above, the desired partial deriv-
atives are given by

0z
e A, +A,S, (879)
0z
oy A, +AS, (880)
Substituting into Eq. (873) gives
Aot Ao 14yt A,
A=) I | 0 (881)
0 \ I
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The expected value of Q% after correcting q is given by
Q% =||W£R (q) — W% Ar8q|| (882)

An orthogonal matrix P is found such that

_ R: | Ry =
s =[]0 |
S’

)}z 0770 s
n b e g
x Y

(883)

where the matrix R is upper triangular. The dimension n
is the number of parameters in q, x is the number of solve-
for parameters, y is the number of consider parameters,
and z is the number of true observables. The matrix P is
a product of n Householder orthogonal transformations.
The formation of P is described in detail in Ref. 1.

Since P is orthogonal,

Q% = |[PW£R (q) — PW§ A 3q| (884)
The first term of the vector in Eq. (884) is formed and
denoted by

(885)

8z; )=
PW%R (q) =8z = [—S_z—,’,»]} y
87 i}z

Substituting Egs. (872), (883), and (885) into Eq. (884)
gives

8z R, | By
Q% = 8z, |- O f R, [._%x__] (886)
87 L0
or
SZ' - Bm SX
Q% = 3z, (887)
Sz
The quantity Q% is minimized if
8z, = R, 8x (888)
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Hence, the parameter estimation formula is given by

8x = R} 8z (889)
This equation gives the linear differential correction 8x
to the solve-for parameter vector x produced by one itera-
tion of the orbit determination process. The a priori esti-
mate ¥ of the consider parameter vector is not corrected.
The exactly constrained parameter vector s is computed
from x + §x and ¥ using Eq. (772). Evaluation of §x from
Eq. (889) requires the computation of W¥% from Eq. (867)
and associated equations, Ay from Eq. (881), R(q) from
Eq. (858), R, from Eq. (883), and 8z, from Eq. (885). After
several iterations of the orbit determination process, the
quantity Q% should approach

2. Numerical techniques. Evaluation of Eq. (889), the
parameter estimation formula, requires the inverse of
the upper triangular matrix R,. Subsection XVI-B-2-a
describes the singular value decomposition method of
inverting R,. The alternative “mass below the diagonal”
technique for inverting R, is described in Subsection
XVI-B-2-b. The partial-step algorithm for obtaining the
parameter estimate in the presence of significant non-
linearities is described in Subsection XVI-B-2-c; it is a
constrained evaluation of Eq. (889).

a. Singular-value decomposition of R, The x by =x
matrix*® R, is nearly always of rank x. However, its condi-
tion number (ratio of largest to smallest singular value)
is often very large. When this occurs, the product R;* §z;
in Eq. (889) can greatly magnify errors in the residual
vector 8z;. The error in the computed differential correc-
tion 8x can be reduced by using an r-rank approximation
to R in place of R} in Eq. (889).

The first step is to find x by x orthogonal matrices U
and V and a diagonal matrix S such that

UTR,V = diag (A, Ao, * * * ,Ae)=S$S (890)

The elements of S are, by definition, the singular values
of R, ordered from largest to smallest. Solving for R, gives

R, = USV* (891)

42The term x represents the number of solve-for parameters.
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This expression for R, is called the singular-value decom-
position of the matrix R,. Inverting Eq. (891) gives

R;' = VS-UT (892)

Let the ith columns of U and V be denoted by u; and v;,
respectively. Then

U= [uliuz; Tt qu]

(893)

V=[wivii o 1vi] (894)

Substituting Egs. (893), (894), and S from Eq. (890) into
Eq. (892) gives

2

sul
Ri= E yiu; (895)
Aj
i=1
Substituting Eq. (895) into Eq. (889) gives
sx = E 1(“)\—8?—)5 Z 8%; (896)

where the dot indicates a dot product. If a singular value
A is very small, the error in 8x; due to the error in §z; can
be very large. That is, errors in 8z, lying along eigen-
directions associated with smaller singular values are
magnified more than error components corresponding to
larger singular values. The quantities v;, w;, and A; of
Eq. (896) are generally computed to a greater accuracy
(more significant figures) than the components of 8z7;
hence the errors in these quantities do not contribute
significantly to 8x.

In Eq. (889), R;' is replaced by its r-rank approximation,
which consists of the first r terms of Eq. (895):

»

V; ll%’
(Rwl)f— é T

i=1

(897)

The integer r is called the pseudorank of the matrix R,. It
must be chosen so that the error due to truncating the last
(x — ) terms of Eq. (895) is less than the error that would
be incurred by retaining them. The pseudorank r is the
largest integer such that

A

T>e (898)
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where € is a small input positive number. Equivalently,
r is the largest integer such that the rank deficient condi-
tion number /A, < 1/e.

Let
(§%)r=diag (1/A, 1/As, - - - ,1/A,) (899)
Ur=[wiwi--jw] (xbyr) (900)
Vi=[viivz!---iv,]  (xbyr) (901)

Then,
(B3, =V, (§), U7 (xbyx) (902)

Equation (889) is evaluated with R;! replaced by (R;?)
from Eq. (902).

T

b. “Mass below the diagonal” technique. The title refers
to the method used to determine the pseudorank r of the
matrix R,. The parameter estimation formula used with
this method gives linear differential corrections for the r
most significant solve-for parameters; the x — r least sig-
nificant solve-for parameters are not corrected.

Let the element which is in the ith row and jth column
of the matrix R, be denoted as r;; and let € be a small input
positive number. Then the pseudorank of the x by x matrix
R, is the smallest integer r for which

& T
2 rh=e 3y
j=rel i=1

j=r+1,---,x (903)

Given the pseudorank r, partition the vectors x and 8z,
and the matrix R, as follows:

Y

) w
.

="t [%g ]} x (906)
X

The parameter vector x, is estimated but x, is not. Thus,

ox = [ §(’)§.l_]
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(907)

Substituting Egs. (905-907) into Eq. (887) gives

Sz ) [ Ru B 0%
875, 0 'Ry, 0

(908)

or

___________ (909)

The quantity Q% is minimized if

82;1 = Rll 8X1

(910)

Hence, the parameter estimation formula is given by

8x; = R} 8z;, (911)
After several iterations of the orbit determination process,
the quantity Q% should approach

87z,

Q% = SZ;

!
8z,

¢. Partial-step algorithm. The partial-step algorithm
is a modification of the singular-value decomposition
method for obtaining the parameter estimate (Subsec-
tion XVI-B-2-a). The singular-value decomposition of the
matrix R, is given by Eq. (891). Substituting the inverse
of this expression (Eq. 892) into the parameter estimation
formula (Eq. 889) gives Eq. (896) for the differential
correction to the solve-for parameter vector, The singular-
value decomposition method deletes terms of Eq. (8986)
which correspond to small singular values since they mag-
nify errors in the residual vector 8z;. However, this magni-
fication error affects only the magnitude of a term 8x; of
Eq. (896); its direction is that of the vector v;, which is
computed to sufficient accuracy. The partial-step algo-
rithm computes each term 8x; of Eq. (896). Then, a
weighted length of each term is computed:

[[8xiflw = (8x7 T2 8x: )% (912)
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where ﬂi is an input realistic a priori covariance matrix
for the solve-for parameter vector x. If ||8x;||w is greater
than an input number QB, the correction vector 8x; is
scaled to 8x; (adjusted) so that ||8x; (adjusted)||w is equal
to a second input number QC, which is usually smaller
than QB. The differential correction 8x is then given by

8x = 3 8x; (adjusted)

i=1

(913)

The scaling process reduces the magnitude of any cor-
rection vector 8x; which is unrealistically large in relation
to the a priori uncertainty in the solve-for parameter vec-
tor x. Since unrealistically large corrections result from
magnification errors associated with small singular values,
the scaling process places an upper limit on errors of this
type. The partial-step algorithm produces a more accurate
parameter estimate than the singular-value decomposi-
tion method since some of the information contained in
the terms of Eq. (896) associated with small singular
values is retained.

If the relation between the computed observables and
the solve-for parameters is extremely nonlinear, many
iterations of the orbit determination process will be re-
quired in order to obtain convergence of the parameter
estimate. For this nonlinear problem, small errors in the
computed correction 8x can eliminate the small amount
of convergence obtained on one iteration of the orbit
determination process. Hence, the high accuracy of the
partial-step algorithm is particularly suited to the non-
linear estimation problem.

€. Covariance Matrix

This section gives the formulation for computation of
the covariance matrix for the estimate of the parameter
vector q: Let the error in the estimate of g be denoted by*?

dx
=55 ]
where 8y = 8¥, the a priori error. Then, the covariance
matrix is given by

S 5x 8xT | 6x 8y”
T,=8q8qf =|-z=---- oo
I
1

(914)

(915)

8y ox7

43In Section XVI-B, the differential correction to the estimate of the
solve-for parameter vector was denoted by 8x. Here, the same
notation will be used for the error in the differential correction.
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where a bar indicates the ensemble average or expected
value of the function. The covariance matrix for the solve-
for parameter vector is given by

T, = 8x 8xT (916)
Similarly, for the consider parameter vector,
T, = 8y 8y” (917)

The cross-covariance matrix for the solve-for and consider
parameter vectors is given by

Ty = 8% 8y7 (918)
Substituting Eqgs. (916-918) into Eq. (915) gives
LR
=] %19

In order to compute the submatrices of Eq. (919), an
expression is required for the error 8x in the estimate of the
solve-for parameter vector x. Equation (889) gives the
linear differential correction to x obtained from each
iteration of the orbit determination process. On the last
iteration, the linear differential correction is very small and
the neglected nonlinear terms are negligible.

The matrix R, of Eq. (889), computed from the weight-
ing matrix Wy and the A7 matrix of partial derivatives, can
be considered to be correct. The residual vector 8z, of
Eq. (889) is computed from W and the residual vector R
given by Eq. (858). The error in the estimate x is due en-
tirely to the error in R given by

82 (A, + A, S,) 85
SR=| s% [—| 0o —5R, + SR, (920)
2 55

The quantities 82, 8%, and 8% are errors in £, %, and ¥,
respectively. The quantity (A, + A, S,) 8y is the error in z
due to the error in ¥ used to compute it (see Eq. 880).

From Egq. (885), the error 8R, in R will produce errors

8z}, 82}, 87, and 8z, in the residual vectors 87, 8z, 8z,
and 8z}, respectively. Similarly, the error §R; will produce
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errors 8z, 8z, 87, and 8z.,. Substituting 8R, from Eq. (920) into Eq. (885) gives

82

PW%| 8% |=04=| 52,

3y

(Ay + A, S8y) 85 0
*PW;,? a_—_—b ______ =—PW1§-§AT|:-§.-y=‘]}x =
-ﬂ---és_” _____

This result could have been obtained directly by inspec-
tion of Eq. (886) (with the null correction vector replaced
by 8y). The total error in the residual vector 8z computed
from Eq. (885) is 8z, from Eq. (921) plus 8z, from
Eq. (922) or

8z;; — Ry 85

Substituting this error into Eq. (889) gives the required
expression for the error 8x in the estimate of x:
8x = R;* (825, — R,y §Y) (923)

Substituting Eq. (923) into Eq. (916) gives

Te = R;' (325, — Ry 85) (32 — 87 RL)(R;Y)”

(924)
or
T, = R;t (82}, 87Z + Ry T, RZ,
— Roy 87 82% — 82, 857 RL,) (R;*) (925)

Postmultiplying 8z7 from Eq. (921) by its transpose and
averaging gives

52887 0 ! 0O
s oar=PW4| 0 1 T, | T, [(WHrPT
VRS v
(926)

But 8% 827 is the data covariance matrix T, which is pre-
sumed to be the inverse of the diagonal data weighting
matrix W:

Mo =T, =W~ (927)
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82z,

"""" (921)
8z,

R, 1Ry 0 R, 8% 8z,

0 (8, |[]=-| By |=|ok| o
010 0 82

Hence, the partitioned matrix in Eq. (926) is W7 (see
Eq. 860) and

57, 52,8 = PW§ W= (WH)r P (928)
Using Egs. (862) and (864), this reduces to
57, 8ZF = PIPT =PPT =1 (929)

Since Eq. (929) is an identity matrix, its submatrix
8z;, 822 (see Eq. 921) is also an identity matrix:

8z}, 8z =1 (xbyx) (930)

The matrix 8y 877 is also required in Eq. (925). Using
Eq. (921), it can be expressed as

§5 82 = 55 627% R, R:*

= (32,8977 | 0 | Rz (931)

0

Postmultiplying Eq. (921) by §¥* and averaging gives

0 |}z
5zt 85T = PW%| T,y (932)
5,
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Substituting W from Egs. (867) and (868) and using
Egs. (862) and (864) gives

0|}z
8z, 8yT =P| 0 |}=x (933)
T%

Substituting W¥% from Eqs. (867) and (868) and A, from
Eq. (881) into Eq. (883) and retaining the first x columns
only gives

W% (A, + A So) 1z [R.]*
P W4 ya=| 0 |y (934)
0 ly 0 1|,

Substituting Eqgs. (933) and (934) into Eq. (931) gives

57022 = [010! (T4)r] P P Wi R

=[0] (ybyx)

Substituting Egs. (930) and (935) into Eq. (925) gives

(935)

T, = R} (R;")" + BR;' R, T, RL (R;Y)"  (936)
Postmultiplying Eq. (923) by 8¥7, averaging, and substi-
tuting Egs. (918) and (935) gives

T = —R2 Ry, T, (937)

Of course,

T, =T, (938)
If the parameter estimate is obtained by using the sin-
gular value decomposition method (Section XVI-B-2-a)
to invert the matrix R,, that is, if the parameter estimate
is obtained from Eq. (889) with R;* replaced by its r-rank
approximation (R7}) computed from Eq. (902), then this
substitution is also made in Egs. (936) and (937).

If the “mass below the diagonal” technique (Section

XVI-B-2-b) is used to determine the pseudorank r of the
matrix R,, estimates for the r most significant solve-for
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parameters are obtained from Eq. (911). For this case,
R;' in Egs. (936) and (937) is replaced by

4D

rx—r

This produces zeroes in the rows and columns of T, for
the x — r least significant solve-for parameters whose
values are not estimated. It also produces zeroes in the
rows of T, for these parameters.

If the parameter estimate is obtained by using the
partial-step algorithm (Subsection XVI-B-2-c), T'; and Ty
are not currently computed by the DPODP.

Given T;, Ty, and Ty, from Egs. (936-938) and the
matrices S, and S, defined by Eq. (773) or (877-878), the
covariance matrix for the exactly constrained parameter
vector s is computed from Eq. (817). The square roots of
the diagonal elements are the standard deviations for the
exactly constrained parameters (0, 1, or 2 parameters).
The matrices T';s and T'ys given by Egs. (818) and (819) are
not computed.

The covariance matrix Ty given by Egs. (919), (936),
(937), and (938) can be expressed as

T, = S’S (939)
From the definition of Eq. (862), the square root of Ty is
the matrix S. It is given by

BT 10
=8=|--g--—------ = (940)
——-I‘:!/z Rg‘y (R;:l)T 'I‘Zé

The matrix (R;)? is lower triangular while T% is upper
triangular. The inverse of Eq. (939) is

T = (§7) (S) (941)
The square root of T! is given by
(TP =T = (7)1 = (87
R, iR,y o2
| o TiEs (542)
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The following will show that Egs. (936) and (937) for computing T, and Ty, respectively, from the square-root formu-
lation are identical to the corresponding equations (Egs. 813 and 814) of the normal-equations formulation (if the inexact
constraints of the latter formulation are not applied). Substituting W% from Egs. (867) and (868) and A, from Eq. (881)
into Eq. (883) gives

WHh(A, + A, S W% (A, + A, S,) R, Ry
— | R S [N | S
P W ) —WgT, T |=| 0!R, (943)
— Jm e e —— = | ] e —— [ Jp—
0 ! T 0'0

Premultiplying each side of this equation by its transpose gives

Y

(As + AsSo)" W (Ac + AsSo) + Wy (As + AsSo)* W (A, + A, S) — W, T, T
(A + AS)TW (A, + A, S) — T T, W, (A, + AS,)"W (4, + AS,) + TP T, W.Tn B + T

RTR,: RIR,
————— Lo TB (944)
RLR, RLR,+RIR,
i

oy Loy
Equating the upper left-hand submatrices gives
RIR,= (A, + A S,)" W (A, + A, S,) + W, (945)
and equating the upper right-hand submatrices gives
RZRay = (As + A So) W (A, + A, S,) — W, T, T (946)
Substituting Eq. (798) into Eq. (945) gives
RIR, =]+ W, (947)
Inverting this equation gives

RMBR)" = (J + W) (948)

If inexact constraints are not applied to the estimation of the parameter vector with the normal-equations formulation,
the matrix L given by Eq. (807) reduces to

L= (A + A S)*W (A, + A, S,) (949)
Substituting this expression for L into Eq. (948) gives
RIRy =L —W,T,, T} (950)
In order to facilitate the substitution of Eqs. (948) and (950) into Egs. (936) and (937), the latter are written as
T, = R (R;\) + R;* (R;)" RZ R., T, R%, R. R;* (R;)” (951)
and

T = — R} (B;)" RY R, T (952)
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Substituting Eqs. (948), (950), and the transpose of Eq. (950) into Egs. (951) and (952) gives

= (J + W)yt + (] + Wo)* (WoToy T TL, W, + LT, L7 — W, T, L7 — LTI, W,) (] + W)

and

I‘zy = (I + W’@)“1 (W@ fwy - L‘f‘y)

In the normal-equations formulation, T, and T, are com-
puted from Egs. (813) and (814), respectively. If there are
no inexact constraints, the matrix K is removed from
Egs. (813) and (814), the matrix L given by Eq. (807) re-
duces to Eq. (949), and Egs. (813) and (814) reduce to
Eqs. (953) and (954), respectively. Thus, in the absence of
inexact constraints, Egs. (813) and (814) for computing T,
and T, with the normal-equations formulation are equal
to the corresponding equations (Eqs. 936 and 937) of the
square-root formulation. Furthermore, the equality of
Egs. (936) and (813) applies to each of the two terms.

From the equality of Egs. (813) and (936) and the dis-
cussion of Section XV-E, which relates the various terms
of Eq. (813) to the various error sources which affect the
estimate of the solve-for parameter vector, the following
conclusions can be drawn. The first term of Eq. (936) is
the nonconsider covariance matrix:

I‘G‘Nc = B';l (321)T (955)

It accounts for errors in all of the processed tracking data
(the current batch of data and all previously reduced
batches of data) and the error in the a priori parameter
estimate for the first batch of data. The second term of
Eq. (936) accounts for errors in the consider parameters.
Because of its presence, I'; computed from Eq. (936) is
referred to as the consider covariance matrix. Substituting
Egs. (937) and (955) into Eq. (936) gives

Ty = Toyg + Doy T, TZ, (956)

The sensitivity matrix S,, is defined by Eq. (828) and
related to Ty, by Eq. (831). Substituting Eq. (937) into
Eq. (831) gives

Swy = — R Ry (957)
Substituting Egs. (955) and (957) into Eq. (936) gives
Ty = Ty, + Sey Ty ST, (958)
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(953)

(954)

D. Mupping Covariance Matrix to New Epoch

This section gives the formulation for mapping the co-
variance matrix for the parameter vector g, Ty, or the
square root of its inverse, I';4, from the injection epoch**
to any other epoch. The parameter vector corresponding
to the mapped covariance matrix is g with the spacecraft
injection position and velocity components replaced by
the position and velocity components of the spacecraft
relative to a specified body R at the map epoch.

The mapping formulation is used to map Ty to a new
epoch for statistical purposes or to map T, or T'} to the
injection epoch for a new batch of data, where it is used as
a priori information (I‘q or I‘%) The processing of a batch
of data requires the square root of the weighting matrix,
W%, which can be computed dlrectly from Eq. (867) if
I“Vz is available. However, if only I‘q (containing sub-
matnces T, Ty, and T) is available, I“% can be computed
from Egs. (861) and (868).

1. General mapping formulas. The solve-for parameter
vector q, given by Eq. (857), will be denoted as g, in this
section. It can be re-ordered and partitioned as

X
Q=i 8
b

The spacecraft state vector X2, dynamic parameter vector
a, and observational parameter vector b are defined before
Eq. (836).4° The mapped parameter vector is given by

XR
q"=[ﬁ‘éi]
N

4¢The epoch of the solve-for spacecraft state vector.

45The parameter vector qo given by Eq. (836) contains the exactly
constrained parameter vector s, whereas qo given by Eq. (959)
does not.

(959)

(960)
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where

XEF = gpacecraft state vector relative to body R at map
time

The injection covariance matrix is the covariance matrix

for g, and will be denoted as Ty . The mapped covariance

matrix is the covariance matrix for g® and will be de-
noted by T.

The injection covariance matrix (Eq. 919) with rows
and columns ordered according to Eq. (857) is given by
Eq. (939). This same matrix with rows and columns
ordered according to Eq. (959) is given by

T, = TS"ST” (961)

where T is an (orthogonal) permutation matrix. Premulti-
plication of S7S by T re-orders the rows, while postmul-
tiplication by T re-orders the columns. Eq. (961) can be
rewritten as

Tyq, = (ST)* (ST7) (962)
The matrix ST” is the matrix S given by Eq. (940) with
the columns re-ordered according to Eq. (959). Let it be
denoted by

c=ST7 (963)
Then,
Tyq, = S8, (964)
Let the mapping matrix M be defined by

The formulation for computing M is given in Subsec-
tion XVI-D-2. From Eq. (965), the mapped covariance
matrix is given by
T = 8q% 8g®”

= M 8q,8qF M”

= M Ty M”

= MSLS,M"

= (S¢ MT)" (S0 M™)

(966)

Hence, the square root of T' is
% = S¢ M” (987)
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This equation maps the square root of Ty, namely S, to
the square root of T. Given T% from Eq. (967), the mapped
covariance matrix is given by

T = I'% 1% (968)
Invertng Eq. (967) gives
(T = (M7 57 (969)
But, from Egs. (864) and (863),
(T%)* = [(THA]7 = (T %)" (970)

Hence, the square root of the inverse of T is given by

T% = (S3)7 M- (971)

From Eq. (963),

(ST = () T" (972)
which is the square root of the inverse of Ty, given by
Eq. (942), with the columns re-ordered according to
Eq. (959). Thus, Eq. (971) maps the square root of the
inverse of Ty, to the square root of the inverse of I".

2. Mapping matrix. This section gives the formulation
for the mapping matrix M and its inverse M. The former
is used in Eq. (967) to map the square root of the covari-
ance matrix, while the latter is used in Eq. (971) to map
the square root of the inverse of the covariance matrix.

The dynamic parameter vector a of Section XV will be
denoted here as a’; it includes all of the dynamic param-
eters which affect the spacecraft trajectory. Among them
are ps, pa, and Rg, which are related by the lunar con-
straint, and pg and Az, which are related by the solar
constraint. One parameter from each of these constraints
is placed in the exactly constrained parameter vector s.
The remaining parameters of a’ are members of g given
by Eq. (857) or Eq. (959). Hence, a’ can be partitioned as

-]

where a is the dynamic parameter vector of Eq. (959).
It includes all of the dynamic solve-for and consider
parameters except the components of X2,

(973)"
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From the formulation of Subsections XV-F-1 and -2
and Eq. (973), the variation in X?® of Eq. (960) at an ET
map epoch is given by

(4]
$XE = U SXE + (V — %5:—1‘) sa’ (974)

The U and V matrices are obtained from the solution of
the variational equations (Section XIII). For a non-ET
map epoch (Al, UTC, UT], or ST), the matrix V is re-
placed by V* which is the V matrix with the ATy455 col-
umn incremented by

XJ;/U
and the Afcesium column incremented by

_ 1= 252460800 .
9,192,63L770 /7

where )';:g,o is evaluated at the map epoch ¢. Let

X,

' =V —
V=V oa’

(975)

where V is replaced by V* for a non-ET map epoch. Par-
titioning the columns of V’ according to Eq. (973) gives
V' = [V4i V] (976)
The matrix V7, gives partial derivatives of X? with respect
to solve-for and consider parameters and V7 gives partial
derivatives of X® with respect to the exactly constrained
parameters. Substituting Egs. (973), (975), and (976) into
Eq. (974) gives
3XB = U 8XE 4 V,8a + V} 8s (977)

From Egs. (772) and (773), the variation in the exactly
constrained parameter vector s is

. dx
85 = [5,i5,] [-gy ] (978)
Repartitioning according to Eq. (959) gives
X3
8s = [SxiS.iS]| 8a (979)
~5b-

- where Sy, S,, and S, are the partial derivatives of s with
respect to X2, a, and b, respectively. However, all of the
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parameters of the solar and lunar constraints are dynamic
parameters. Thus, Sy and S, are null matrices and

3s = S,8a (980)
Substituting Eq. (980) into Eq. (977) gives
8XE =USXE + (V, + V;8,) 8a (981)
From Eqs. (959), (960), (965), and (981),
SXE Ui (Va+V58,) 1 0 [[axe
g =| 8a |= ‘(ﬂ ——————————— E_bﬂ ‘8a | =M sqq
sb 0or 0 11| s
(982)
Thus,
U i(Ve+ViS,)! 0
M=|0o: 1 10 (983)
00 T
Inverting this equation gives
U= U (Vo + ViSa)1 0
Mr=|To0 T T (e8e
0 0o I

The formulation of Section XV maps the covariance
matrix for the parameter vector g, which contains the
solve-for, consider, and exactly constrained parameters.
The submatrix of the mapped covariance matrix which
corresponds to the solve-for and consider parameters is
identical to the covariance matrix for solve-for and con-
sider parameters mapped with the formulation of this sec-
tion. The constraints are used in Section XV to compute
the rows and columns of the injection covariance matrix
which correspond to the exactly constrained parameters;
in this section, they are used to combine partial derivatives
in the mapping matrix.

3. Multiplication of matrices. This section shows how
to form T from Eq. (967), I from Eq. (968), and I'% from
Eq. (971) as products of partitioned matrices. The purpose
of partitioning is to take advantage of the large number of
null and identity matrices in M and M.
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In order to compute T*% from Eq. (967), partition the
columns of the matrix S¢ according to Eq. (959):

So= [nsn,, 1]
D e ey s

8 a b

(985)

where a is the number of dynamic parameters in a and b
is the number of observational parameters in b. Also, in
Eq. (983), define

V=V, + V.S, (986)

Then, substituting Eqs. (983), (985), and (986) into Eq. (967) gives

Uri0 10
T% = SgM” = [ng! n;' mp) 773“5"1":'"6— = [ns:na][
0l o0 T

After computing T% from the last form of Eq. (987),
partition as

=[A}B] (988)
6 q
where ¢’ = a + b. Substituting Eq. (988) into Eq. (968)
gives
ATA IA""B
[( ATByr BT B ] (989)
This is the covariance matrix for
Xz ]
B=|--5- 990
q [ q (990)
where
r=|.2
=[+] (991)

The rows and columns of Eq. (989) are partitioned
according to Eq. (990). The covariance matrix for X® is
AT A, the cross-covariance matrix for X® and g’ is AT B,
and the covariance matrix for g’ is B” B. However, this
latter submatrix of Eq. (989) need not be computed, since
it is identical to the corresponding submatrix of the injec-
tion covariance matrix.

In order to compute I'*% from Eq. (971), partition the
columns of (S;)7 according to Eq. (959):

(55)7= lds, da; di]

s o oy

6 a b

(992)

JPL TECHNICAL REPORT 32-1527

Vit ] rmiom [inindf i |

' ;

6 a b
(987)

Substituting Eqgs. (984), (986), and (992) into Eq. (971)
gives

U—li —UV,i 0

= (S3)" M = [doi dui dy]

= [de] [U - UV, 0]
+ [d.][0}1
= [ds U_li ""'ds U VA + da: db]

10] + [d,] [0,0}1]

(993)

The mapped covariance matrix I' computed from
Eq. (989) has its rows and columns ordered according to
the ordering of parameters in Eq. (960). If T' is used as
@ priori information for processing a new batch of data,
ie., if it is used as T,, the rows and columns must be
re-ordered according to the ordering of parameters in
Eq. (857) for the new batch of data. Formally, this re-
ordering is obtained by premultiplying T by T% and post-
multiplying it by T. After re- -ordering, the submatrices T,
Tay, and T, can be extracted.

Similarly, I* computed from Eq. (993) is the square
root of the inverse of the mapped covariance matrix whose
rows and columns are ordered according to the ordering
of parameters in Eq. (960). If 7% is used as a priori infor-
mation for processing a new batch of data, i.e., if it is used
as ’f’;‘é in Eq. (867), it must be postmultiplied by T. This
changes the ordering of the columns of I from the order-
ing of the parameters in Eq. (960) to the ordering of
parameters in Eq. (857) for the new batch of data.
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Glossary

The meaning of the symbols used frequently through-
out the text are given below. In order to prevent the
notation from becoming excessively complex, some of the
symbols have more than one meaning; the correct mean-
ing can easily be determined from the context. The sym-
bols are also defined in the text. There are many localized
departures from the meaning of the symbols given here.

Subscripts and Superscripts

E earth

M moon

B earth-moon barycenter

P planet

S sun

C center of integration for spacecraft trajectory

(C=E,M,S,orP)
S/C spacecraft
1 transmitter (transmitting station on earth)

2 spacecraft (a free spacecraft or a landed space-
craft on a planet or the moon)

3 receiver (receiving station on earth)
t; transmission time at point 1
t; reflection time or transmission time at point 2

t, reception time at point 3

Position and Velocity Vectors

In the following, a “1950.0” position vector has rectangu-
lar components referred to the mean earth equator and
equinox of 1950.0.
rl,x,, 1950.0 position vector of point i relative to point {
r; 1950.0 position vector of point i relative to the

sun S, That is, r; = %,

k2

r 1950.0 position vector of spacecraft relative to the
center of integration C

¥» body-fixed position vector of tracking station,
landed spacecraft, or free spacecraft, with rectan-
gular components referred to the equator and
prime meridian
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rl

body-fixed position vector of spacecraft with rec-
tangular components referred to the up—east-north

coordinate system

T5 1950.0 position vector of tracking station or landed
spacecraft relative to body on which located

For any of the position vectors above, r — ¥, ¥, ¥, where
the dots denote differentiation with respect to ephemeris
time.

r,7;,7;; magnitudes of x or 1, v;, and ¥}, =1,
respectively
8i,8;; magnitudes of ¥; and ¥;;, respectively

x’ y’ Z’

%,1,%, rectangular components of position vector
and velocity vector (may have same indices
as vectors)

- A
y
r z
X=|-- cail el BV state vector (all may have
. indices)
)
e z -

In the relativistic 1-body problem (Section IT),

r,0,¢ spherical coordinates (see Fig. 1) relative to the

body (the sun in all DPODP applications)

r,¥ position and velocity vectors relative to the body
with rectangular components referred to a non-
rotating coordinate system (1950.0 components
in DPODP applications)

§ magnitude of r

In the relativistic n-body problem (Section IT),

1;,T; position and velocity vectors of point i relative
to the barycenter of the solar system, with rec-
tangular components referred to a nonrotating

coordinate system

Siation Location Parameters

7,¢,2 body-centered radius, latitude, and longitude
(measured east from prime meridian) of track-

ing station, landed spacecraft, or free space-
craft
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Glossary {contd)

u,v distance from spin axis and height above
equator of a tracking station or landed space-
craft

For a tracking station, a subscript 0 refers the values
above to the mean pole, equator, and prime meridian of
1903.0. Otherwise, the quantities are referred to the true
pole, equator, and prime meridian of date.

¢y geodetic latitude of tracking station

Physical Censtanis

pi  gravitational constant of body i, km3/s? = Gm,,
where G = universal constant of gravitation and
m; is the mass of body i

o L2 — ratio of mass of earth to mass of moon

par
u gravitational constant in the relativistic 1-body
problem, km3/s? (Section 1I and Appendix C)

Az the number of kilometers per astronomical unit
AU = scaling factor for heliocentric ephemerides
of the planets and earth-moon barycenter

Ry the number of kilometers per fictitious earth
radius = scaling factor for geocentric lunar
ephemeris

E osculating orbital elements for the heliocentric
ephemeris of a planet or the earth~-moon
barycenter or for the geocentric lunar ephemeris

AE estimated correction to E
¢ speed of light, km/s

Time

ET ephemeris time = coordinate time ¢ of general
relativity, the independent variable for the
ephemerides

Al atomic time derived from oscillations of a
cesium atomic clock. One Al second is

9,192,631,770 cycles of cesium.
UTC broadcast universal time

UT1 observed universal time, corrected for polar

motion

ST station time = time derived from an atomic
clock at each tracking station
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An epoch is expressed as double-precision seconds past
January 1, 1950, 0* and is denoted as £ (i) or i, where i is
the symbol for the time scale (ET, A1, UTC, UTIL, or ST).
The symbol ¢ indicates (1) ephemeris time or (2) time in
any time scale. The epoch ¢ (i) or ¢ may be subscripted as
indicated under “Subscripts and Superscripts”.

7,7* proper time recorded on the observer’s
atomic clock. The length of the = second is
chosen so that at zero Newtonian potential
and zero barycentric velacity, dr = dt
(ephemeris time). The length of the *
second is chosen so that r* on earth agrees
on the average with ephemeris time.

Ty number of Julian centuries of 36,525 days of
UT1 elapsed since January 0, 1900, 12 UT1

T number of Julian centuries of 36,525
ephemeris days elapsed since January 0,
1900, 122 ET

JD  Julian date

a’ b’ c’ d’

e,f,g h polynomial coefficients for time

transformations
UTC —ST =a+ bt + ct?
Al —UTC=d + et
Al—UTl=f+ gt + ht*
The polynomial coefficients are specified by time block
and ¢ is seconds past the start of the time block. It is

evaluated with one of the two times related by the trans-
formation.

AT,gss the constant part of the (ET — Al)
time transformation = 32.15 s
(adopted)

feesium  conversion factor from cycles

obtained from a cesium atomic clock
to seconds of Al time = 9,192,831,770
cycles per second

feesium + Afcesium  Cycles of cesium atomic clock per
ephemeris second (average). The
parameter Afcesium may be estimated
by the DPODP; its current nominal

value is zero.
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Glossary (conid)

Miscellaneous and equinox of date to coordinates referred
d equi
6 true sidereal time = Greenwich hour angle to the true earth equator and equinox
. of date
of true equinox of date
6 derivative of § with respect to ephemeris ¢ Newtonian potential (positive)
time
. . . 1+o
A precession matrix, transforming from Y=5 T
(0]

coordinates referred to the mean earth
equator and equinox of 1950.0 to
coordinates referred to the mean earth
equator and equinox of date

where o = the coupling constant of the scalar field, a
free parameter of the Brans-Dicke theory
of gravitation

N nutation matrix, transforming from coordi-

nates referred to the mean earth equator = defined equal to
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Appendix A

Derivation of n-Body Relativistic Equations of Motfion

This appendix gives two derivations of Eq. (54), the
n-body equations of motion in the Brans-Dicke theory.
The derivations also apply for the corresponding equa-
tions of general relativity (Eq. 35) if the parameter y of
the Brans-Dicke theory is set equal to unity. In Section I,
the equations are derived from the n-body Lagrangian
(Eq. 53), while in Section II they are derived from the
n-body metric tensor (Egs. 43-48 and 30-31).

i. Derivation From n-Body Lagrangian

The n-body Lagrangian L of the Brans-Dicke theory
(Eq. 52) may be expressed as Eq. (53), where the index 4
refers to the particular body i whose motion is desired and
the indices 7 and k refer to the n other bodies. The n-body
equations of motion are the Euler-Lagrange equations:

oL d (oL
éx_i—-%(ﬁiq;)—() x>Y,% (A-1)
In Eq. (53),
B=x+g A (A-2)
and
o8 .
—ai—i =2 (A-3)

Differentiating L (Eq. 53) with respect to %; gives

oL 1, 1+ 2y i\ .

—_— 2 P — N

o%; (1 toE it T Z i)
£

_ 3+ 4YZW &
2c? Tij

j#i

- 2]C-2 Z"L'L(E;.T—‘ﬂ [(rj — 15)°25]

. N 1/]
J¥ (A_4)

In order to differentiate Eq. (A-4) with respect to co-
ordinate time ¢ for use in Eq. (A-1), the derivatives of §
and r;; with respect to t are required:

5‘% - i‘i ° l.‘., (A-5)
dsi . .
"t'iT B 2,l‘i T; (A-6)

Since $% appears in a term of order 1/¢? in Eq. (A-4), the
Newtonian expression for ¥; may be used:

“ _ 2 :.ua' (rj — 1)
X = r’si] (A-7)
j#é
Substituting Eq. (A-7) into Eq. (A-6) gives
ds; i .
=5 = 2 E ", (r; —x;)°k; (A-8)
J#i
The coordinate distance ;; is given by
i =(r; — 1) (1, — x3) (A-9)
Hence,
. 1 . s
= (rj —x5)* (¥ — 13) (A-10)

Using Egs. (A-8) and (A-10), a straightforward differentiation of Eq. (A-4) with respect to ¢ is given by

d (oL 1, 1+ 2y B\ oe 1
—_— Y = I I il B3 _—
dt (6&,) (1 + 2c? 5 + c? Zri,)x* + c?

j#i

j=i

CZ

L ey —r) Rl — L > B [(ry —m) (s~ 1]

3+ 4y pi%; 3+ 4y i o a7 1 ©i 01,3 .
— o E ;'u]+ Do? E #[(Ij—ri)'(fj*ri)]xf“zcgé ?:i'[(ri_ri)'ri](xi—xi)

ij
J#i £t

jzi

by BBy o] [ —x) G = 80) — g P )

j#d

1 i (x5 — x4) .
o0 E “’—;.%“—f[(l'j—ri)°ff]

j#i
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(A-11)
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Evaluating ¥; in the 1/¢? terms from Eq. (A-7), combining like terms, and changing the sign of the equation gives

d (oL e 1 i . 1 o .
~< <ax,) =kt g) B {[ri —r,-]e[(z + 9§ — (§ +2y>r,.:|}xi
FE
1 ; 3+4 .
—;2- —;L;’—{[ri——rj]{( g Y)r,—(1+2y) :]}x,

+Z"’ () 2 ()

£

1. . T; —r;)°F; |? 1 e
"ﬁ“”"“%?[(_T;)_J] 5o (i)

3 . . 3+ 4y ui X
g U = x) 1 [~k 4+ 2T (A12)
j#i
In order to differentiate L with respect to x;, the following subpartial derivatives are required:
%= (% — %) + (g — 93)* + (3 — 2)° (A-13)
Uy B
ox 1 (A-14)
0 1 _ X; — X3
ox; (rij) - 1’%7- (A-ls)
0 1 _ 2 (xf - xi)
04 (ﬂ) I (A-16)
0 _}_ . 3 (x,- - xi)
ox; (73i> h 1% (A1)
Using these equations, a straightforward differentiation of L (Eq. 53) with respect to x; gives
6L 1+ 2‘)/ g (x,- - xi) % sy _ 3+ 4‘y 9 (x,- - xi) s e
o 2 Z 18, (51 +59) 2c? z : 73, (i 1)
j#i i#i
1 Bi rr Neaqs
202 [(r.’/ - rw) r%] x] 902 1,3. [(r]' li) ‘ri] X;
izt !
3 B (x B (% — %) I x) 1 pi (x5 — %) (g + py
—2025 2B ek [y — m]+§ :’ —;-;E ()
j#i D)
_ i By (X — %) (xa B P\ X5 — X3) xa x;) i P X X4) xk (A-IS)
c? T]k 20 1‘” Tix Tii T
i k#j, i f#i k#j,i j#i kzj,t
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Note that interchanging the j and k indices in the last term of Eq. (A-18) gives the next-to-last term. Hence the last
term may be deleted and the next-to-last term doubled. With this change, a combination of like terms in Eq. (A-18)

gives
D e CLINT L2y Sy
- Z 1,7 { ZT” Tin T 9c2 (S@ + S?) 9c* X%
i ki
i £+ z : 1.,
202 % Sor e L@ —x:) 1] [(x; —13) °ri]} += . {[r, ;] - [ -5t ]} %
j#i
1 1. .
- —E; F— {[r"' rf] ° [‘2— ¥ ]} X5 (A-lg)

J#i

Adding Egs. (A-19) and (A-12) and setting the result equal to zero as indicated in Eq. (A-1) gives Eq. (54) for the
acceleration of one of the bodies relative to the barycenter of the system of n bodies, with rectangular components
referred to a nonrotating coordinate system. The acceleration of body j appearing in the 1/c? terms is evaluated with
the Newtonian expression (Eq. 31), and the summations over k=7 in Eqgs. (31) and (54) include body i.

il. Derivation From n-body Metric

The components of the n-body metric tensor in the Brans-Dicke theory are given by Egs. (43-48) and (30-31).
Substituting these components into Eq. (34) gives the following expression for L? (where L = ds/dt):

SPas DI R D) e

1 § [ —r)n]® (l'a' S OMY)
c? - {(2 + 2')’) 1'2,' + T
7#1
—(1+%§§ )(xa+yz+zz)+ Aty E k) (A-20)
k¥

j=i J#i

The equations of motion are given by Egs. (18) and (19), a form of the Euler-Lagrange equations, which are repeated
here with x and # replaced by x; and %;, respectively:

d (. oL L oL oL
E{(Lg;)— (f)(L a:)— (L 33\’4) =0 XY,z (A-21)
where
L LL LL
f Tz T e (A-22)

The quantity LL is obtained by differentiating a simplified expression for L? containing terms to order 1/¢° only. The
derivative L 9L /dx; is obtained from Eq. (A-20) by considering the Newtonian potential at each perturbing body § (in
term 4 of Eq. A-20) and the acceleration of body j, computed from Eq. (31), to be functions of coordinate time # only, as
indicated after Eq. (34).
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Differentiating Eq. (A-20) with respect to %; gives

AL (1 + 2 Z—”‘i)a‘é,- +2 +22VZ £1% (A-23)
Bxi Tij C Tij

iwi FES]

Differentiating with respect to coordinate time ¢ using Eq. (A-10) and evaluating ¥; in a 1/¢? term with Eq. (A-7) gives

:iit (L ) — % +Z b { iz Z’u} Z {[rs — 151 = [29F; — 29851} %

) B (=] e+ 2 <2+2y)i',-1}&,-+‘°‘§272“"5"" (a24)

c? i
e i#t

where X; is given by Eq. (31) with the summation over k 4§ including body 1.

To terms of order 1/¢°, L? is given by

L2mc?—9 E $ (A-25)
f“

Differentiation with respect to ¢ using Eqs. (A-8) and (A-10) and substitution into Eq. (A-22) gives L/L to order 1/c2.
Substitution of this expression and Eq. (A-23) to order 1/c® into the second term of Eq. (A-21) gives the following
expression, containing all terms to order 1/c¢:

1 "y . . .
~(B) (1) =23 - (A-26)
fed
Differentiating Eq. (A-20) with respect to x; using Eqgs. (A-15) and (A-17) and considering the Newtonian potential at

each perturbing body j and the Newtonian acceleration of each perturbing body { to be functions of coordinate time ¢
only gives

%_E:m(xj—xi) _%_E :m _1_2 :ﬁ §z2 P2 +y). .
Laxi - 7’%,‘ 1 c? Ti1 c? fjk+y(0 (1+ )( ) ——Cr_ri ¥

j#i [£3 kzj

3 [(r;—r)e5;)° 1 v 1 1 i X
N Rl R R R B ) Y Rt AR = B

i#i =i

(A-27)
where ¥; and %; are obtained from Eq. (31) and the summation over k541 in Eq. (31) and in Eq. (A-27) includes body i.

Adding Egs. (A-24), (A-26), and (A-27) and setting equal to zero according to Eq. (A-21) gives Eq. (54) for the accelera-
tion of one of the bodies relative to the barycenter of the system of n bodies.
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Appendix B

Derivation of ET — A1 Time Transformation

{. Infroduction

This appendix gives the derivation of the periodic rela-
tivity terms in the ET — Al time transformation (Eq. 65).
The nomenclature used in this appendix and the numeri-
cal values of the constants used are given in Section II.
The expression for ET — Al includes all terms which
affect “differenced-range” doppler (see Section XI) by
more than 2 X 107 m/s per AU of range to the space-
craft. Using this criterion, minimum values for the coeffi-
cients of the retained daily, monthly, and annual terms
of dA1/dET are generated in Section III. The terms of
dA1/dET which must be retained are identified in Sec-
tion IV. Expressions for the magnitude and orientation of
the velocity vector obtained from the elliptical orbit of
the earth-moon barycenter relative to the sun, which are
required in the derivation of Eq. (65), are derived in Sec-
tion V. The derivations of the retained terms of dA1/dET
are given in Section VI. In Section VII, these terms are

summed and integrated to give the final expression for
ET-AL

il. Nomenclature and Numerical Values
of Constants

In the following, a dot indicates the derivative of the
quantity with respect to coordinate time t (synonymous
with ephemeris time ET).

s, Mw, y = gravitational constants for sun, earth, and
moon, respectively:
pe = 1.32712499 X 10* km?/s?

pr = 398,601.2 km?3/s?
par = 4,902.78 km® /s
= pp/par = 81.301
¢ = speed of light = 299,792.5 km/s
Ay = the number of kilometers per AU
= 149,597,893.0 km/AU

@ = semimajor axis of heliocentric orbit of earth—-
moon barycenter

= 1.00000023 Ax = 149,597,927 km ~
149,597,900 km

e = eccentricity of heliocentric orbit of earth—
moon barycenter
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= (.01672. From 1950 to 2000, the last figure
changes from 3 to 1.

M = mean anomaly of heliocentric orbit of earth—~
moon barycenter (Eq. 67)

E = eccentric anomaly of heliocentric orbit of
earth-moon barycenter

v = true anomaly of heliocentric orbit of earth—
moon barycenter

I, = geometric mean longitude of the sun,
referred to the mean equinox and ecliptic
of date (Eq. 68).

I = true longitude of the sun, referred to the
mean equinox and ecliptic of date

r = radial coordinate of earth~-moon barycenter
from sun

§g = velocity of earth-moon barycenter relative
to sun

§c = circular orbit velocity of earth-moon bary-
center relative to sun

z(us+ua+fm

%
a ) = 99.784741 km/s

y = elevation angle of heliocentric velocity
vector of earth-moon barycenter from the
transverse direction

= tan™ [#/(r0)]

€ = mean obliquity of the ecliptic
cos € = 0.91746. From 1950 to 2000, the
last figure changes from 4 to 8.

ay = semimajor axis of geocentric orbit of the
moon
= 384,399.285 km. The term ay is computed
from the lunar constraint, Egs. (107) and
(108), using the values of yz and uy
given above

ey = eccentricity of geocentric orbit of moon

= 0.0549 (not used in expression for ET-Al)

€ = mean longitude of the moon, measured in
the ecliptic from the mean equinox of date
to the mean ascending node of the lunar
orbit, and then along the orbit
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D = ( —L = mean elongation of the moon from
the sun (Eq. 69)

Su = circular orbit velocity of moon
%
= (ﬁl"—t“f_) = 1.024549 km/s
ay

£ = longitude of the mean ascending node of
the lunar orbit on the ecliptic, measured
from the mean equinox of date

i = inclination of the lunar orbit to the ecliptic

plane
cos ¢ = 0.99597

6y = mean sidereal time = Greenwich hour angle
of mean equinox of date

fx = mean sidereal rate (Eq. 273)
= 0.729212 X 10~*rad/s

UT = universal time UT1, hours past midnight,
converted to radians (computed from

Eq. 66)
. duT 27 rad
UT = &= 564005 — 0.7272205 X 10-*rad/s

(To this accuracy, this UT derivative equals
the desired ET derivative.)

A = east longitude of tracking station at which
Al atomic clock is located

u = distance of tracking station at which Al
- atomic clock is located from earth’s spin
axis, kin

v = height of tracking station above earth’s
equator, ki

Sgry = geocentric velocity of tracking station
r2, ¥% = position and velocity vectors of point a
relative to point b
where the indices a and b may be
B = earth-moon barycenter
E = earth
M = moon

STN = tracking station on earth (location of Al
atomic clock)

S = sun

o . .
§? = magnitude of i?

¢o = Newtonian potential at point a due to
the sun

$ = Newtonian potential at tracking station due
to the sun

§ = heliocentric velocity of tracking station

The angles M, L, and D are computed from Egs. (67),
(68), and (69). These linear representations are tangent to
the quadratic or cubic expressions of Ref. 25, pp. 98 and
107, for T = 0.7 Julian centuries past January 0, 1900,
12» ET.

The values of the gravitational constants, ¢, and Ay
were obtained from Ref. 29; the remaining constants were
obtained from Ref. 25.

iil. Criteria for Retention of Periodic Variations in
¢ and §° in Expression for dA1/dET

An accurate expression for the ET — Al time transfor-
mation is required to implement the forthcoming program
change specified in Section XI, namely the computation of
doppler observables from differenced range observables.

In the derivation of the expression for ET — Al, all
terms affecting “differenced-range” doppler by more than
2 X 10"m/s per AU of distance to the spacecraft were
retained. Several terms of this magnitude were neglected
and the resulting error in differenced-range doppler is
about 10°m/s/AU or 10°m/s for a spacecraft range
of 10AU. The figure of 10°m/s is the accuracy of the
current doppler observable.

The contribution to differenced-range doppler (DRD)
from each term of ET — Al satisfies the inequality*®

|SDRD| (m/s) =

dz
75 (ET — Al)‘ p (B

The absolute value of the contribution, |$DRD], is ex-
pressed in 1-way m/s, and (ET — Al) represents a peri-
odic relativity term of ET — Al. Since the range p to the
spacecraft is the range in AU times 1.5 X 10" m/AU,

& (ET — Al) | (15 X 10" m/AU)

|SDRD|(m/s/AU) = I

(B-2)
46See Subsection XI-C-2-a.
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Since all retained terms of ET — Al contribute more
than 2 X 10 m/s/AU, they satisfy the inequality

(BT — Al)l > 1.33 X 10-/s (B-3)

dt2

or
l pn (dA1>l > 1.33 X 10-% /s

where dA1/dET represents a periodic relativity term of
dA1/dET.

(B-4)

The expression for dA1/dET is Eq. (64), repeated here:

dA1_1_¢—$_l§2-—§2
dET c? 2 2

Afcesium

fcesium

+
(B-5)

Thus, the periodic variations in ¢ and §* retained in
Eq. (B-5) must satisfy

|% > 1.20 X 10~ km?/s* (B-6)
d 2
= (—s ) > 1.20 X 10~ km?/s® (B-7)

If the periodic variations in ¢ and (1/2) §? have a mag-
nitude of M (km?/s?) and a period P, the inequalities of
Egs. (B-6) and (B-7) become

2 M) > 120 X 10 k/s° (B-9)

The variations in ¢ and §? have periods of about 1 day,
1 synodic month, and 1 year. Let the retained terms
satisfy

IM|>a (B-9)
M
Z=| > b (B-10)

The values of ¢ and b for each of the above-mentioned
periods are shown in Table B-1.

It will be seen that the daily variations in dA1/dET are
proportional to u, the distance of the Al atomic clock
from the earth’s spin axis in kilometers. Since the maxi-
mum value of © is 6,378 km, all daily terms of dA1/dET
whose coeflicient M /(c? u) is greater than 2.8 X 10-2¢/km
should be retained.
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Table B-1. Valuesofcand b

Period P Valve of Valuve of b,
© a, km?/s® dimensionless

1 day = 0.864 X 10°s 1.6 X 107° 1.8 X 107
1 synodic month = 2,55 X 10°s 4.8 X 107 54 X 1078
1year = 3,16 X 10°s 0.60 6.7 X 1072

IV, Identification of Significant Terms of dA1/dET

The terms of ¢ — ¢ which must be retained in Eq. (B-5)
may easily be identified by consideration of Eq. (B-6).
The potential at the Al clock on earth due to a specific
body f is

o = £ (B-11)

T

where p; is the gravitational constant of body § and 7; is
the coordinate distance from the Al clock to body . The
periodic variation in ¢/ must be retained if

>12X 107km?/s*  (B-12)

His ;
7 T
7

ol

The maximum value of ¢/ from a planet is about
10-8km?/s%. This value is obtained from either Venus or
Jupiter and is less than the criterion of 1.2 X 10-" km?/s3.
Hence, the variation in the potential ¢ due to the planets
may be ignored in Eq. (B-5). The peak value of ¢/ from
the moon is about 2 X 10-2 kim?/s®. Hence the lunar poten-
tial may also be ignored in Eq. (B-5).

The solar potential at the Al clock has an annual,
monthly, and daily variation. The coefficient of the
monthly term of 75 in Eq. (B-12) is about 0.012 km/s, and
the monthly component of ¢* has a maximum value of
about 7 X 10-#km?/s®. Thus, the monthly variation in the
solar potential may be ignored. The coefficients of the
annual and daily terms of 7y are both about 0.5km/s, and
the corresponding values of ¢* are about 3 X 10-*km?/s?,
which is significant. Hence, in Eq. (B-5), the only signifi-
cant variations in the Newtonian potential ¢ at the loca-
tion of the Al clock on earth are the annual and diurnal
variations in the solar potential.

The expression for the square of the heliocentric veloc-
ity § of the tracking station at which the Al atomic clock
is located, used in Eq. (B-5), is given by

= [+ i'g + By o [ + 5 + ¥y (B-13)
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or
&= () + () + (Fw)?

+2i‘§TN'f§+2fg°i§+2i§TN’ig (B-14)

The terms of 5 — 5 which must be retained in Eq. (B-5)
consist of the periodic variation in the first term of
Eq. (B-14) and the last three terms. Referring to Sec-
tion III, the value of M for the second term of Eq. (B-14)
is one-half of the magnitude of the periodic variation of
the term or about 10-5 km?/s?, which is less than the mini-
mum value of 4.8 X 10-2km?/s? for a retained monthly
term. The geocentric velocity of a tracking station is an
extremely constant quantity, and hence the variation in
the third term of Eq. (B-14) is also insignificant.

Section VI will give the derivations of the periodic
terms of dA1/dET arising from the following:

(1) The annual variation in ¢ and §* of the tracking
station (term AT)

(2) The daily variation in potential at the tracking sta-
tHon (term DP)

(3) The product of the daily and annual velocity com-
ponents in §2 (Eq. B-14, term 4) (term DA)

(4) The product of the monthly and annual velocity
components in §? (Eq. B-14, term 5) (term MA)

(5) The product of the daily and monthly velocity com-
ponents in §? (Eq. B-14, term 6) (term DM)

The expression for dA1/dET which contains these terms is

dAL _ +(£1_P_xl) +(dA1 +(@1)

dET dET/,, " \dET/,, ' \dET/,,
flél Elél Afcesium
+ dET)MA+ dET)m, L —
(B-15)
where
dAl 1 1 ..\
(1), =~ # w2 @]
1 .
[+ 5]} (B-16
dAl 1
ZI—E_T_>DP = — = (psrw — ¢n) (B-17)
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dAl 1 .
(37), =~ 56 (B-18)
dAl 1. .
(%), = - 5@ (B-19)
dAl 1., .
(7)., =~ 5 i (B-20)

V. Velocity Vector of Earth-Moon
Barycenter Orbit

In the derivation of an integrable expression for
dA1/dET in Section VI, expressions are required for the
magnitude and orientation of the velocity vector from
the elliptical orbit of the earth-moon barycenter relative
to the sun. These expressions are derived in this section.

The square of the velocity Sy is given by

. 2 1
88 = (ps + pz + pa) (7 = ;) (B-21)
where
r=a(l—ecosE) (B-22)
Dividing by ra gives
1_1,% sE (B-23)
r a r
Substituting Eq. (B-23) into Eq. (B-21) gives
'g:——————”3+”;+"”(1+—2‘:—e-cosE) (B-24)

The expression for 3y is obtained by expanding the
square root in powers of e, retaining all terms to order e2.
Then, using Eq. (B-23) to eliminate a/r and using trigo-
nometric identities gives

. % 1
Sg = (”—S—Uh‘f—j——ﬂg> (1 —I~%e2 + ecos E +Ze2 cos 2E)

(B-25)
Since terms of order greater than e? are ignored, E is

given by

E=M+esinM+ --- (B-26)
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Substituting Eq. (B-26) into Eq. (B-25) and retaining
terms to order e? gives the required expression for sg:

. e 1
ss=sc(1—zez+ecosM+%ezcos2M> (B-27)

where

%
= (ﬂwsi_@i_f‘!.) (B-28)

a
In Section VI, the orientation of the velocity vector of
the sun relative to the earth-moon barycenter is specified
by the angle
I1+90deg — v

An expression will be developed for

l—y=L+(@®w—M)—y (B-29)
From Ref. 58, p. 120,
v—M=2esinM+-Z—ezsin2M+ -+ (B-30)
The elevation angle v is given by
;= tam® (7’0-) (B-31)
The expressions for 7 and 0 are
F= (”s_l_ “;: +M>%esinv (B-32)
g = s T HET+ puar) pT% (B-33)
where
p=a(l—e¢?) (B-34)
Thus,
y = tan™ (—:; esin v) (B-35)
Ignoring terms of order greater than &2,
¥ z-gesinv (B-36)
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Using Egs. (B-22), (B-26), and (B-30), and retaining terms
to e? gives the desired expression for y:

1
v=esinM + < e?sin 2M

> (B-37)

Substituting Eqgs. (B-30) and (B-37) into Eq. (B-29) gives

l——y=L+esinM+iz-ezsin2M (B-38)

VI. Derivation of Integrable Expression
for dA1/dET

Integrable forms for the five terms of dA1/dET speci-
fied by Egs. (B-16) to (B-20) are obtained in the five
subsections below. A number of terms are obtained as
expansions in powers of the eccentricity of the heliocentric
orbit of the earth-moon barycenter or the geocentric orbit
of the moon. The required order of e for each term is
stated before the term is derived. It will be seen that all
of the derived terms of dA1/dET are larger than the mini-
mum values for retained terms specified in Section III,
and that using the next order of ¢ in each expansion would
yield terms which are smaller than these criteria.

A. Term AT: Annual Variation in ¢ and §?

Repeating Eq. (B-16),
dAl 1 1, 1,
()., = - {lnra@] [ 2e]

= — S {tn— Tl +3 G — G}

(B-39)
Since ¢35 = pug/r, Eq. (B-23) gives
ép— ¢5 = M—ig cosE (B-40)
From Eq. (B-24),
1. T bs€
) [(8s)? — (86)°] = =, oos E (B-41)

145



Thus,
dAl . 2}‘.5 e
(dET)AT =gy ok
= iisae (r) cos E
Inserting numerical values from Section II gives
dAl _
dET/ ,,

However, for the purpose of integrating Eq. (B-15), a
slight variation of this equation is required. Since

E_gi_ﬁ_lz_l_<.ﬂs+uﬂ +MM)%zl<l_;§)% (B-44)

(B-42)

— 0.330074 X 10-* ( ) cosE  (B-43)

a7 a r

where t = ET, Eq. (B-42) may be expressed as

dAl 2 (usa
(——dET)AT = ————("‘"’c ¢ cosE)E (Bo45)
Inserting numerical values gives
dA .
(E—E_'}‘) = —(1.658 X 10-3s) (cos E) E (B-46)
AT

When Eq. (B-15) is multiplied by dET = d¢, this term
is exactly integrable.

Since e is constant to approximately four figures from
1950 to 2000, the coefficient of Eq. (B-46) is given to that
many figures. A variation of one digit in the fourth figure
changes the magnitude of the term by 2 X 103, which
is less than the retention criterion of 6.7 X 10-*2 for an
annual term (Section III). The approximation of the fac-
tor (us + ps + pa) by us above is valid since these two
quantities differ in the seventh significant figure.

dAl
(dET)DP cz 2 [COS (0x + X) cos L + sin (65 + A)si

B. Term DP: Daily Variation in Solar Potential

Repeating Eq. (B-17),

dAl
dET) .

This term may be derived assuming that the earth moves
in a circular orbit with radius a in the ecliptic plane. The
distance from the sun to the tracking station where the
Al clock is located is denoted as rgry. Then,

daaly  _ psf 1 1 ~-L5 )
dET/,p ~ & \rszx @ cza2 Tsrw — @

(B-48)

(¢s1-zv' én) (B-47)

where

E a8 E o
_ Yorn “Tp oy "Tg
TSTN~a+—a———a——

(B-49)

The two vectors, with rectangular components referred
to the mean earth equator and equinox of date, are
given by

wcos (0y + 1)

2. =1 usin(y + A) (B-50)
v
cos L
rf =| sinLcose |a (B-51)
sin Lisin €

Substituting Eqs. (B-49), (B-50), and (B-51) into Eq. (B-48)
gives

(B-52)

The last term has a maximum magnitude of about 2 X 10-%, which is less than the retention criterion of 6.7 X 10-*2 for an
annual term. Ignoring this term and using trigonometric identities gives

(—d—jll-> = sl [(1 + cose)cos(8y — L + ) + (1 — cose) cos (8 + L + A)]
Dp

dET T 2cta?
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(B-53)
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Both terms have a period of about 1 day. The maximum
magnitude of the second term is about 1.8 X 10-*4, which
is the retention criterion for a daily term. Since several
terms with only a slightly smaller magnitude are neg-
lected, this term is ignored also.

In order to evaluate the surviving term of Eq. (B-53),
the definition of universal time UT (which means specifi-
cally UT1) must be considered. From Eq. (92) or Ref. 25,
pp. 73-74,

where all quantities are expressed in hours and Ry is the
right ascension, measured from the mean equinox of date,
of a fictitious point on the equator. The adopted expres-
sion for Ry is (Ref. 25, p. 73)

Ry, = 1838™45:836 + 8,640,1845542 Ty + 020929 T3
(B-55)

where

Ty = number of Julian centuries of 36,525 days of UT
elapsed since January 0, 1900, 12* UT.

Changing units in Eq. (B-55) gives

Ry = 279°41/27"54 + 129,602,768"13 Ty + 173935 T3
(B-56)

This expression for Ry is almost identical to the follow-
ing expression for the geometric mean longitude of the

sun, L, referred to the mean equinox and ecliptic of date
(Ref. 25, p. 98):

L = 279°41°48"04 + 129,602,768"13 T + 17089 T*
(B-57)

where

T = number of Julian centuries of 36,525 ephemeris
days elapsed since January 0, 1900, 12 ET.

The constant term of Ry is 20”5 smaller than the corre-
sponding term of L since Ry is corrected for stellar aber-
ration. The derivative of the quadratic term of Eq. (B-36)
is the linear term in the precession rate in right ascension.
That is, the point described by Ry moves at a uniform
rate with respect to a fixed equinox, whereas the mean
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sun does not. The difference in the quadratic terms of Ry
and L will amount to only about 0.3 arc seconds by the
end of the century. For a fixed epoch, the contribution to
L — Ry due to computing the former from the ET value
of the epoch and the latter from the UT value of the
epoch is in the range of 1 to 2 arc seconds. Thus, for the
remainder of the century, L and Ry will differ by no more
than 23 arc seconds. Because of this small difference, Ry
in Eq. (B-54) is approximated by L, giving

UT =6y~ L-+12h (B-58)
or, in units of radians,
0y — L=~=UT —= (B-59)

The following argument will show that this approxi-
mation is sufficiently accurate for all daily terms of
dA1/dET. The largest daily term is the first term of
Eq. (B-70) of Section C, which has a maximum value of

—1.5 X 10*°cos (UT -+ &)

Because of the approximation above, the variable UT
is in error by a nearly constant value of 23 arc seconds or
1.1 X 10-*rad. Assuming this error is constant, the error
in dA1/dET is

1.7 X 10-*5in (UT + 1)

The magnitude of this neglected term is not greater than
the retention criterion of 1.8 X 10-** for a daily term.
Hence, the assumption that Ry = L in Eq. (B-54) is valid.

Substituting (64 — L) from Eq. (B-59) into the first
term of Eq. (B-53) gives

dAl usU
(ET—) . = 2:202 (1 + cose)cos (UT + A) (B-60)
Substituting numerical values gives
dAl .
(Ef)np = 0.6326 X 10-*¢u cos (UT + 1) (B-61)

This term is retained since 6.3 X 10-7 > 2.8 X 10-'%, as
specified in Section III.
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€. Term DA: Product of Daily and Annuel are given by
VYelocity Components in 52

Repeating Eq. (B-18), —sin (0x + M)
My =| cos(fu+7) |Sery (B-63)
dAl 1, .
dET)DA =T (¥gry * ¥5) | Y
... .. " _sin(l —
= (Fpw * ¥§) (B-62) ’ sin(l—v) .
8= cos(l — y)cose |Ss (B-84)
The two velocity vectors, with rectangular components cos(l — ) sine
referred to the mean earth equator and equinox of date, B k¢

Substituting Egs. (B-63) and (B-64) into Eq. (B-62) gives

(32 1) = 2235 [sin (6 + A) sin (I — y) + cos (0w + A) cos (I — y) cos €] (B-65)
T/ pa c

Using trigonometric identities gives

(g%;—) = %& [(1+ cose)cos (B +r—1+y) — (L —cose)cos 0y + A +1—1y)] (B-66)
b4a

Substituting [ — y from Eq. (B-38), eliminating 6 in favor of UT by using Eq. (B-59), using Eq. (B-27) for sy and
evaluating Sgry from

Serw = 40y (B-67)

gives

dET ),, 2¢?

' 3
1+ cose)u 1——1—62+ecosM+§-ezcos2M cos{ UT + X —esin M — — ¢?sin 2M
4 4 4

+ fé—-—-cefi(l —cos€)u(l + ecos M) cos (UT + A + 2L -+ esin M) (B-68)

where terms to order 2 are retained in the term proportional to (1 + cos €) and terms to order ¢ only are retained in the
smaller term, which is proportional to (1 — cos €). Expanding and retaining terms to these orders of e gives

dAl $c6 1
(-—dET)DA_—z — 202M (1 + cos e)u[(l -y e“’) cos (UT + A) + ecos (UT + A — M)

+%ezcos(UT+A—2M) —-é—ezcos(UT-f-)t +2M)]

$¢ Our
2¢c?

+ (1 — cos€)u[cos(UT + A + 2L) + ecos (UT + A + 2L + M)] (B-69)
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Substituting numerical values gives

dAl

(dE_T> o = —2.316550 X 10-**ucos (UT + A)

—3.8738 X 10-*¢ 4 cos (UT + A — M)
—7.287 X 10-** g4 cos (UT + ) — 2M)
+8.096 X 10-**u cos (UT + A + 2M)
+0.997334 X 10-*u cos (UT + X -+ 2L)

+1.6675 X 10y cos (UT + A + 2L + M)
(B-70)

From Section III, any diurnal term of dA1/dET with
a coeflicient (exclusive of the value of u) of 2.8 X 1078 or
less may be deleted. Thus, the fourth term of Eq. (B-70)
will be deleted. The first three terms of Eq. (B-70) are
terms of order e° ¢, and e? of the expansion of the first
term of Eq. (B-68).

If e® terms were retained in this expansion, the maxi-
mum value of the numerical coeflicient would be about
1.4 X 107°, which is not significant. Similarly, the last
two terms of Eq. (B-70) are terms of order ¢° and ¢* in
the expansion of the second term of Eq. (B-68). If ¢?
terms were retained, the maximum value of the numeri-
cal coefficient would be about 3 X 10-*°, which also is not
significant.

D. Term MA: Product of Monthly and Annual
Velocity Components in §2

Repeating Eq. (B-19),

dan 1.,
()., = s

bt

= T Fa i ) (B-71)

since r% =15 /(1 + p). Equation (B-71) will be evaluated
assuming that both orbits are circular. The two inertial
velocity vectors, with rectangular components referred to
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the mean ascending node of the lunar orbit on the ecliptic
and the ecliptic of date, are given by

—sin (¢ — &)
2 =] cos(C— Q)cosi |8y (B-72)
cos (C — Q)sing
—sin(L — Q)
=] cos(L— Q) {S (B-73)

0

Substituting Eqs. (B-72) and (B-73) into Eq. (B-71) gives

dAl\ _
dET),,,A -

+ cos (€ — Q) cos(L — §)cosi]

;;(‘?—fl_g-‘“—)[sin(( — Q)sin(L - &)

(B-74)

Using trigonometric identities gives

(——-;lg;,)m = Sy Se 3 [(1 + cosi)cos(C — L)

T o1+

— (1 —cosi)cos(C +L—28)] (B-75)

The magnitude of the second term is about 0.8 X 10-%¢,
which is smaller than the retention criterion of 5.4 X 10-*3
for a monthly term. Ignoring this term and denoting ¢ — L
by D (see Section II) gives

dAl _ $u 8o .
(dET)M = T o+ (L TeosjcosD  (B-76)
Inserting numerical values gives
dAl _ »
dET)MA = —4,1172 X 1022 cos D (B-77)

The first-order monthly eccentricity terms would have
a maximum coefficient of about 3 X 10-3. Since this
value is less than the retention criterion of 5.4 X 10-%3,
the assumption of circular orbits is valid.
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E. Term DM: Produ‘g of Daily and Monthly Velocity
Components in s*

Repeating Eq. (B-20),

dAl 1. .
(EE-T‘)DM == (rgrzv ° rg)

1

w0t p Bt (BT8)

For the purpose of deriving this small term, the 5-deg
inclination of the lunar orbit to the ecliptic and the eccen-
tricity of the orbit are ignored. It will be seen that these
assumptions are justified. The two inertial velocity vec-
tors, with rectangular components referred to the mean
equinox and ecliptic of date, are

@
rga'zv -

—sin (‘941[ -+ )L)
cos (Oy + M) cos€ | Sery (B-79)
—cos (fy + A)sine

—sin ¢
1= cos € | Sy
0

Substituting Eqs. (B-79) and (B-80) into Eq. (B-78)
gives

(B-80)

SsTv Sy

dAl = [sin (6 + X) sin €
qET ), = (L 1 gy 0 (O + 2) sin

+ cos (0 + ) cos C cos €]

(B-81)

Using trigonometric identities and Eq. (B-67) gives

auéy

dAl .
(dET>DM DN [(1 + cose) cos (O + 21— Q

— (1 — cos€) cos (Oy + 1 + C)] (B-82)

The numerical coefficient of the smaller daily term (not
including the value of ) is 0.4 X 10-%8, which is less than
the retention criterion of 2.8 X 10, Ignoring this term
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and using Eq. (B-59) and D = ¢ — L to eliminate §x and
 in favor of UT and D gives

dAl _ __éﬂ— i
(dET)DM T 22 (14w (1 + cos€)ucos (UT + A — D)
(B-83)

Inserting numerical values gives

(—d—:A—l-) = — 0.9684 X 107w cos (UT + A — D)
DM

dET
(B-84)

If the moon moved in the earth’s equatorial plane, the
factor (1 + cos €)/2 would not be present in Eq. (B-83),
and the numerical coefficient of Eq. (B-84) would be
changed to 1.0100 X 10-*". The change of 4.2 X 10-2° is less
than the retention criterion of 2.8 X 10-8,

Thus, in the derivation of (dA1/dET)py, the average in-
clination € (= 23°5) of the lunar orbit plane to the earth’s
equatorial plane is not significant. Hence, neglecting the
periodic variation in this inclination of =i =~ 5 deg with a
period of 18.8 years is certainly justified. Also, the first-
order eccentricity terms of Eq. (B-80) would produce
terms similar to Eq. (B-84) but with a numerical coeflicient
of about 5 X 10-*°, which is less than the retention cri-
terion of 2.8 X 10,

VIl Integration of dA1/dET To Give Expression
for ET — Al

The integrable expression for dA1/dET is obtained by
substituting Eqs. (B-46), (B-61), (B-70) (except the fourth
term, which is not significant), (B-77), and (B-84) into
Eq. (B-15):

dAl

Afcesium
dET

feesium

~—2.310224 X 10~**u cos (UT + A)
—3.8738 X 10w cos (UT + 1 — M)
—7.287 X 108y cos (UT + X — 2M)
+0.997334 X 10**ucos (UT + A + 2L)
+1.6675 X 10" u cos (UT + ) + 2L + M)
—4,1172 X 10-*2cos D

—0.9684 X 107w cos (UT + A — D)

—1 + — (1658 X 10-*5) (cos E) (E)

(B-85)
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where the fourth term is the sum of Eq. (B-61) and the first term of Eq. (B-70). In order to integrate this expression, it is
multiplied by dET, and each of the last seven terms is multiplied by the analytical expression for the constant derivative
of the argument of the cosine function with respect to ET and divided by the corresponding numerical value. The result

(in units of seconds) is

dAl = dET (1 4 Bfesniom

fcesium

) — 1.658 X 10-3(cos E) dE

—0.317679 X 10°u [cos (UT + 1)} dUT

—5.341 X 10 4 [cos (UT + A — M)] (dUT — dM)

~1.01 X 1034 [cos (UT + A — 2M)] (dUT — 2dM)

+1.3640 X 10" [cos (UT + A + 2L)] (dUT + 2dL)

+2.27 X 10782 [cos (UT + A + 2L + M)] (dUT + 2dL + dM)

—1.672 X 10-¢ [cos D] dD

~1.38 X 103 ¢ [cos (UT + A — D)] (dUT — dD)

As indicated after Eq. (64), the master Al clock was set up
on January 1, 1958, 0* UT2. Integrating Eq. (B-86) from
this initial epoch (denoted by subscript 0) to the current
epoch (denoted as Al or ET) gives, in seconds,

Afeesium

fcesium

ET — Al = (ET ~ Al), — (ET — ET,)

+1.658 X 10-*sin E | &7

+0.317679 X 10 usin (UT + A) | =7
+5.341 X 102 4 sin (UT + A — M) | BT
+ 101 X 10 g sin (UT + A— 2M) | 57
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(B-86)

—1.3640 X 101 ysin (UT + A + 2L) | BT

—9.97 X 10 ysin (UT + A + 2L + M) |

+1.672 X 10-¢sin D | 37

+1.38 X 103 ¢4sin (UT -+ A — D) | ET

(B-87)

The initial condition (ET — Al), equals ET — UT2 on
January 1, 1958, O® UTZ2, since the master Al clock was set
equal to UT2 at this epoch. Denoting this quantity
minus the initial values of the periodic relativity terms of

Eq. (B-87) evaluated with u and A of the master Al clock
as AT 055 gives Eq. (65) for ET — Al.
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Appendix C

Derivation of Light Time Equation

The light time equation is derived in Section I without
making the usual assumption that light moves along a
straight line from the transmitter to the receiver. In Sec-
tion II, this same equation is obtained by assuming straight
line motion between two points at the coordinate speed v,
given by Eq. (86). The results are the same because terms
are retained to order 1/c? only and the bending affects
terms of order 1/¢° and greater.

I. Derivation Without Assumption of

Straight Line Motion

Substitution of d¢ from Eq. (79) into Eq. (80), setting
dr/dt = 0 when r = R (the minimum value of r on the
light path), and ignoring 1/c* terms gives

SEDE
g = 1 cr
- = 2 2) %
c {ﬂ[1+(1 ‘*‘zv)u] —R2[1+(1ty)“] }
cir c*R
(C-1)
Making the following change of variable:
p=r+ e (C2)
1+
po=R+ {0 (©3)
gives, ignoring 1/c* terms,
et (IZ;Z)M]‘Z”
dt =+ p o = piy (C-4)

Writing the right-hand side of Eq. (C-4) as two terms and
replacing p and p, by r and R in the 1/¢? term gives

pdp (At y)p  dr

(C-5)

Integrating from point 1(r; or p;, ¢,) to point 2 (7, or p,, £.)
gives

1
t,— == — [(pf — p8)¥% — (ot — pb)%]

1+9y)u 1y + (13 — R®%]
= In [n + (13 — R2)%

(C-6)

where the plus sign applies when r is strictly increasing
from point 1 to point 2, and the minus sign applies when
r is strictly decreasing from point 1 to point 2. From the
second form of Eq. (82), and referring to Fig. 2,

A+yp (QA+y)pr

x=rcos¢ =R+ o =R (C-7)
Substituting Eq. (C-3) into Eq. (C-7) gives
(L+y)pr
po =%+ —p— (C-8)

Substituting Egs. (C-2) and (C-8) into (p* — p3)%, evalu-
ating x in a 1/¢? term with Eq. (C-7), and ignoring 1/c¢*
terms gives the result that

(p* — pBfh = (r* — 2P = 1y {(C9)

where the minus sign applies for negative y (decreasing ).
Substituting this result into Eq. (C-8) gives

tz_‘t'_l:

Y2~y 1+ T, + (13 — R)%
c T & In r + (12 — R)%

(C-10)

where the minus sign applies for decreasing r. The argu-
ment of the logarithm in Eq. (C-10) may be expressed as

ﬂ=il
c

(*—p8)%2 ¢ (r*— R (as explained below)

o+ (i —RYW 1 — (13— R)%  r+ 1+ [(r]— R3% — (1} — R)¥]
nt(@—RY% 1, —(3— R r 4 — [(13— RA% — (17 — RY)%)

ontn [P (2] (g — 1)
Tt — [t — (12— 2] (Y — )

(C-11)
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The second form is obtained from the first by multiplying ~ Eq. (C-9); hence, the lower sign in the numerator and
and dividing by denominator applies for decreasing r (negative y). Sub-
stituting the final form of Eq. (C-11) into Eq. (C-10) gives

[r, — (12 — R2)*%] [r, — (r§ — R?)%]

YT +(1+Y)I‘«1n rt (Y. — )
The third form is obtained from the first two forms by b=t =" c? 1 — (Y — Y1)

adding the numerators and denominators. The fourth (C-12)
form is obtained by replacing R by x and ignoring the

1/c? terms of Eq. (C-7) since they produce 1/¢° terms in ~ which applies when r is strictly increasing or strictly
the light time equation. The fifth form follows from  decreasing.

The quantity y, — y, is the y component of the straight line distance r,, between the transmitter (point 1) and the
receiver (point 2). From Fig. 2, the maximum angle of r;, to the y axis is (1 4 y) u/c? R. Hence,

12— (Y — ) < % — (Y —y) = (w: ; ) [(1 :;;) M]z (C-13)
(5]

which is of order 1/c*. Since 1/c® terms are ignored in the light time equation, y, — y, may be replaced by 7, in
Eq. (C-12), giving

oy T (1+'Y)IL 1+ 1, 150
t,—t = P -+ po In PR ——— (C-14)

which applies when the sign of 7 does not change between ¢, and t,. For the case where r passes through a minimum

between r, and r, (see Fig. 2), the total light time is the time for light to travel from r, to the minimum radius R plus the
time for light to travel from R to r,. Let light reach the radius r = R at ephemeris time t;. Then,

tp—t, = (t, — tg) + (tg — ty) (C-15)

From Eq. (C-10) with the positive sign,

b —tp = —yci+ .(lioz)_& {In[r, + (12 — R2%] — InR)} (C-16)

From Eq. (C-10) with the negative sign and the argument of the logarithm replaced by the second form of Eq. (C-11),

tR—t1=—%1—+—(}—il)—&{ln3——ln[r1—(r%—1{2)%]} (C-17)

63

Substituting Egs. (C-16) and (C-17) into Eq. (C-15) and replacing (y, — y,) with r,, gives

_ T, Aty)p, [1+(@F— R)%
tz - tl - —C— + e ln r— (1’% — Rz)% (C"].S)
The argument of the logarithm may be expressed as
r,+ (3 —R%  r+ (- R v+t (C-19)

1’1 - (1‘% - RZ)% 1'2 - (')‘;_2, - RZ)% - Ty + 1'2 - 1'12
This result was obtained by using the procedures used in the derivation of Eq. (C-11) and by setting y. — y1 = 712.

Substituting Eq. (C-19) into Eq. (C-18) gives Eq. (C-14). Hence Eq. (C-14) is the general result which is valid regardless
of whether r increases, decreases, or passes through a minimum between r, and r,. Equation (C-14) is Eq. (88) of the text.
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li. Derivation Assuming Straight Line Motion

The geometry for straight line motion is shown in
Fig. C-1, where S indicates the position of the sun. Light is
emitted at point 1 at ephemeris time #;, moves along the
straight line path at the coordinate speed v, given by
Eq. (86), and arrives at point 2 at time t,. Let

r;,T; = heliocentric position vectors of points 1 and
2 at ephemeris times t, and #,, respectively,
with rectangular components referred to a
nonrotating coordinate system

P12 =¥ X1

11,72, 71, = magnitudes of r,, r,, and r,,, respectively
Then, the angles B8, and B, are computed from

;3 Iy

[0 ] B1 - " ° T 0 < Bl < (C-ZO)
Cos B, = —2 . 212 0<B<z  (C21)
T2 T2

Fig. C-1. Geomeiry for straight line motion
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For a photon passing the sun S on an infinitely long track,
the angle B decreases from = to zero, passing through =/2
at the point of closest approach, where r = R,.

The time for light to travel from point 1 to point 2 is the
integral of the differential of coordinate distance do
divided by the coordinate speed of light v, along the
straight line path joining the two points:

fy—t, = i" (C-22)
From Eq. (86),
vczc[l—-—————(l 1;:“‘] (C23)
Ignoring terms of order 1/c5,
Y S W ETE
e ol A L
c c o T
From Fig. C-1,
docos B =dr (C-25)

Note that cos 8 and dr have the same sign and thus do is
always positive. Also, from Fig. C-1,

and
dr_ rdp
cosB  sinf (C-27)
Substituting Eq. (C-27) into Eq. (C-25) gives
- T8
do = sin (C-28)
Substituting Eq. (C-28) into Eq. (C-24) gives
. _Te (I+yp [ dB
Loh= c fB sin 8 (C-29)
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This may be integrated directly, giving

1
tan—ﬁl
r 1+ 2
fy—ty = Ty 037)”111 T (C-30)
tan-é— B-

For light moving radially to or from the sun, 8, = 8, =
= or zero, respectively, and Eq. (C-30) is indeterminate.
For this case, the time for light to travel radially from 7,
to 1, (to or from the sun, not through the sun), denoting
the larger and smaller values of 7, and 7, as 7y4r5er and

Tsmaller, iS

Tlarger d/r 1
tg - t1 - —_——=

c

Tlarger [1 + (1 + 'Y)F'] dr

2
smaller Uc Tsmaller c'r

(C-31)

which integrates to

t,—t =24 Lty 1n( Tlarger ) (C-32)

o Tsmalier

1t will be shown that Eq. (C-32) for the radial case and
Eq. (C-30) for all other cases are equivalent to Eq. (C-14)
derived without the assumption of straight line motion.
The argument of the logarithm of Eq. (C-30) may be
written as

1
tan 5= 8. _ _sinf  1+cosp, (C.33)
tan 1 8 1+ cos B, sin B,
2
However, from Fig. C-1,
r28in B, = r;y sin By (C-34)
Thus,
tan L B
5 P1 _ (1 4 cos 8z) (C-35)
tan %_ 8, ;{1 + cos B,)
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The argument of the logarithm may also be written as

1
tan—.‘a’—ﬁl _1—cosB, _sinf: _ 7. (1 — cos B;)
1 T sinf,  l—cosB, 7.(1—cosp)
‘tan—z‘-',B2

(C-36)

Adding the numerators and denominators of Egs. (C-35)
and (C-36) gives

1
tan 5" B _ 1+ 15+ (r2c08 B2 — 11005 1)
T 1+ — (r.cos B — r1c0s By)

1 (C-37)
tan —é‘ B

Regardless of whether r increases, decreases, or passes
through a minimum between r, and 7,,

72 €08 B2 — 11 COS By = T4, (C-38)
Thus,
tan -
an-g B 7+ 1y + 1y
1 R —- (C-39)
tan _2_ Bz 1 2 12

and Eq. (C-30) is equivalent to Eq. (C-14). For the radial
case, Eq. (C-32) is equivalent to Eq. (C-14) since

(7'1 + T2 + 7’12) — 2rlarger — 'rlarger (0_40)
radial

1+ 12— 110 2 smatter Temaller

Thus, if terms to order 1/c? only are retained in the light
time equation, it is valid to neglect the bending of light.

In the original version of the DPODP, the light time is
evaluated with Eq. (C-30) or Eq. (C-32), using 8, and 8,
from Egs. (C-20) and (C-21). However, it is planned to
replace these equations with Eq. (C-14).

As previously mentioned, the form of Eq. (C-14) has
been derived by Holdridge (Ref. 23) and by Tausner
(Ref. 24). The form of Eq. (C-18), evaluated along a
straight line path, has been derived by Ross and Schiff
(Ref. 64).
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