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This report documents the complete mathematical model for the Double- 
Precision Orbit Determination Program (DPODP), a third-generation program 
which has recently been completed at the Jet Propulsion Laboratory. The DPQDP 
processes earth-based doppler, range, and angular observables of the spacecraft 
to determine values of the parameters that specify the spacecraft trajectory for 
lunar and planetary missions. The program was developed from 1964 to 1968; it 
was first used operationally for the Mariner VI and VI1 spacecraft which encoun- 
tered Mars in August of 1969. 

The DPQDP has more accurate mathematical models, a significant increase in 
numerical precision, and more flexibility than the second-generation Single- 
Precision Orbit Determination Program (SPODP). Doppler and range observables 
are computed to accuracies of m/s and 0.1 m, respectively, exclusive of errors 
in the tropospheric, ionospheric, and space plasma corrections. 
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This technical report documents the mathematical 
model for the Double-Precision Orbit Determination Pro- 
gram (DPODP), a third-generation program that has re- 
cently been completed at the Jet Propulsion Laboratory 
(JPL). The DPODP will be used to determine values of the 
parameters that specify the spacecraft trajectory for lunar 
and planetary missions; it will be used for both real-time 
and post-flight reduction of tracking data. The DPODP 
dgerentially corrects a priori estimates of injection param- 
eters, physical constants, maneuver parameters, and station 
locations to minimize the sum of weighted squares of re- 
sidual errors between observed and computed quantities. 

The analysis began in 1964, and coding for the IB 
7094 computer was initiated the next year. The program 
was completed and fully checked out at the end of 1968; 
it was first used operationally for the Mariner VI and VI1 
spacecraft, which encountered ars in August, 1969. 
Conversion of the program to the Univac 1108 computer 
was completed early in 1970. 

PODP has more accurate mathematical models, 
significantly more numerical precision, and more flexibility 

than the second-generation Single-Precision Orbit Deter- 
mination Program (SPODP). The basic limitations on the 
accuracy of computed observables are the inaccuracies in 
the troposphere and ionosphere corrections. Before these 
corrections are added, ,the computed values of the doppler 
and range observables have accuracies of m/s and 
0.1 m, respectively. The parameters whose values may be 
estimated by the DPODP are: 

Injection parameters. Rectangular components of 
the spacecraft position and velocity vectors at the 
injection epoch. 

Reference parameters. Parameters that affect the 
relative position and velocity of the sun, planets, 
and the moon: 

AE = the number of kilometers per astro- 
nomical unit (AU). 
converts the precomputed heliocen- 
tric ephemerides of eight planets 
and the earth-moon barycenter 
from astronomical units to kilom- 
eters. 



RE = scaling factor for lunar ephemeris, 
km/fictitious earth radius. This fac- 
tor converts the precomputed geo- 
centric lunar ephemeris from ficti- 
tious earth radii to kilometers. 

= osculating orbital elements for the 
precomputed ephemeris of a planet, 
earth-moon barycenter, or the 
moon. The estimated correction ~ 3 3  
is used to differentially correct posi- 
tion and velocity obtained from the 
precomputed ephemeris. 

p E ,  p M  = gravitational constants for the earth 
and moon, km3/s2. These param- 
eters affect the location of the earth- 
moon barycenter. 

(3) Gravitational constants. The constant p i  is the gravi- 
tational constant for body i, such as the sun, a 
planet, or the moon. (Note that p E  and pM are also 
listed under reference parameters.) 

(4) Harmonic coefficients. The harmonic coefficients 
J,, C,,,, S,, along with the gravitational constant 
p ,  describe the gravitational field of a planet or the 
moon. 

(5)  Parameters affecting the acceleration of the space- 
craft due to solar radiation pressure. 

(6) Coefficients of quadratic for small acceleration act- 
ing along each spacecraft axis. These quadratics 
are used to represent gas leaks and small forces 
arising from operation of the attitude control system. 

(7) Parameters affecting spacecraft motor burns. 

(8) Parameters affecting the transformation from uni- 
versal time to ephemeris time. 

(9) Coefficients of quadratics which represent the de- 
parture of atomic time at each tracking station from 
broadcast UTC time. 

(10) Station parameters. (1) Radius, (2) latitude, and 
(3) longitude or (1) distance from spin axis, (2) height 
above equator, and (3) longitude for each tracking 
station and a landed spacecraft on a planet or the 
moon. For a tracking ship: (1) spherical coordinates 
at an epoch, (27 velocity, and (3) azimuth. 

(11) Speed of light. An adopted constant which defines 
the light-second as the basic length unit; it is not 
normally included in the solution vector. 

(12) Constant bias for range observables. 

(13) Spacecraft transmitter frequency for one-way dop- 
pler. 

(14) Biases affecting observed angles. 

(15) Relativity parameter y. This parameter will be 
added to the program. It is equal to (1 + 0)/(2 + W) 

where w is the coupling constant of the scalar field, 
a free parameter of the Brans-Dicke theory of gravi- 
tation. 

Given the a priori estimate of the parameter vector q, 
the program integrates the spacecraft acceleration using 
the second-sum numerical integration method to give po- 
sition and velocity at any desired time. Using the space- 
craft ephemeris along with the precomputed ephemerides 
for the other bodies within the solar system, and the pa- 
rameter vector q, the program computes values for each 
observed quantity (normally doppler, range, or angles) 
and forms the obseroed minus computed (0 - C) resid- 
uals. 

In addition to integrating the acceleration of the space- 
craft to obtain the spacecraft ephemeris, the program 
integrates the partial derivative of the spacecraft acceler- 
ation with respect to (wrt) the parameter vector q using 
the second-sum numerical integration procedure to give 
the partial derivative of the spacecraft state vector X 
(position and velocity components) wrt the parameter 
vector q, aX/aq. Using aX/aq, the program computes the 
partial derivative of each computed observable quantity 

. Given the 0 - C residuals, az/aq, and the 
weights applied to each residual along with the a priori 
parameter vector and its covariance matrix, the program 
computes the differential correction Aq to the parameter 
vector. Starting with q + Aq, the program computes a 
new spacecraft ephemeris, residuals, and partial deriva- 
tives and obtains a second differential correction Aq. This 
process is repeated until convergence is obtained and the 
sum of weighted squares of residual errors between ob- 
served and computed quantities is minimized. 

The DPQDP formulation was heavily influenced by the 
general theory of relativity. Section I1 gives the equations 
from general relativity, which are the basis of the DPODP 
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formulation, and also the principal relativistic equations 
contained in the formulation. The derivations of three of 
these equations are given in Appendixes A, B, and C. 

The time transformations used throughout the program 
and the formulation for computing the relative position, 
velocity, acceleration, and jerk of any two celestial bodies 
(sun, moon, or planets) are described in Sections I11 and 
IV, respectively. The equations for the acceleration of the 
spacecraft relative to the center of integration (any planet, 
the sun, or the moon) are given in Section V. 

The first step in the computation of all observable quan- 
tities is the light time solution, which is described in 
Section VI. The formulation for computing the geocentric 
inertial position and velocity of a tracking station is pre- 
sented in Section VII. The computation of doppler, range, 
and angular observables is described in Sections VIII-X. 

A forthcoming change to the formulation will be to 
compute doppler observables from differenced range ob- 
servables divided by the count time, with partial deriva- 
tives of the doppler observables with respect to estimated 
parameters obtained from differenced range partial deriv- 
atives. The formulation necessary to implement this 
change is given in Section XI. 

Corrections to the observables due to antenna motion, 
the troposphere, and the ionosphere are described in Sec- 
tion XII. The variational equations for the spacecraft 
trajectory and the partial derivatives of the observables 
with respect to the estimated parameters are described 
in Sections XI11 and XIV. 

In the original version of the DPODP, the parameter 
estimate was obtained from the normal equations, which 
are documented in Section XV. In the latest version of 
the program, this formulation has been replaced by the 
square root form of the normal equations, which is de- 
scribed in Section XVI. The square root formulation is 
theoretically equivalent to the normal equations but is 
numerically superior. superior numerical techniques 
of the square root fo 
linear least squares problem by R. 
Lawsod (Ref. 1). 

applied to 
nson and C. 

of the symmetrical metric tensor gpg: 

g2l g22 g23 g24 
g31 g3Z g33 g34 

gP, = 

The subscripts 1,2,3, and 4 correspond to the space-time 
coordinates xl, x2, x3, and x4, which are associated with a 
particular space-time frame of reference. Usually the 
frame of reference is nonrotating and centered at the 
barycenter of the system of masses considered. Then xl, 9, 
and x3 are position coordinates and x4 = ct, where c is the 
speed of light and t is coordinate time, a uniform system 
of time which exists throughout the frame of reference; 
it is synonymous with ephemeris time. The components 
of the metric tensor g,, are obtained from a solution of 
Einstein’s field equations. The solution depends upon 
the distribution of matter and the system of coordinates 
selected. 

The invariant interval ds between two points with 
differences in their space and time coordinates of dx’, dx2, 
dx3, and dx4 is given by 

where, using the Einstein convention, the repeated indices 
p and q are summed over the integers 1 through 4. 

In an inhitesimally small region surrounding an ob- 
server, the components of the metric tensor are constant 
and the expression for the interval ds can be transformed 
to the special relativity form 

dS2 = c2dT2 - dX2 - dY2 - dZ2 (3) 

where is proper time recorded on the observer’s atomic 
clock and X, Y, and Z are components of observed position 
referred to the observer’s local frame of reference. Since 
the atomic clock is fixed relative to the observer, the inter- 
val ds corresponding to an observed interval of proper 
time dr is 

1Jet Propulsion Laboratory, Computation and Analysis Section. 



or 

ds 
d7 = - 

C (5) 

ence Eq. (2) relates an observed interval of proper time 
d7 to the changes in the space and time coordinates of 
the clock. 

The space-time coordinates are used to represent the 
motion of particles, bodies, and light. The coordinates 
have no physical significance and are not observable. 
Furthermore, the choice of coordinates is completely arbi- 
trary. The solution of &e field equations for g,, varies 
with the coordinates selected in such a manner that the 
value of an observed interval of proper time computed 
from Eqs. (2) and (5) is independent of the coordinates 
selected to represent the motion of the atomic clock. 

The field equations have been solved exactly for the 
case of a massless particle moving under the influence of 
a single spherically symmetric massive body located at 
the origin of a nonrotating system of coordinates. The 
solution of this 1-body problem was first obtained by 
Schwarzschild and is given in Ref. 2, p. 85, Eq. (38.8). 
A simple transformation in the radial coordinate gives 
the “1-body” solution in isotropic spherical coordinates 
(Ref. 2, p. 93, Eq. 43.2): 

- ( 1 + -&--)4 (dr’ + r2de2 + r2 sin2 

(6) 

p = gravitational constant of nonrotating spheri- 
cally symmetric massive body located at origin 
of nonrotating frame of reference, kms/s2. The 
constant p is equal to the product of the uni- 
versal gravitational constant C and the rest 
mass m of the body. 

where 

c = speed of light 

r, (6, e = spherical coordinates. he spherical and rec- 
tangular coordinates of a particle P are shown 
in Fig. 1. 

t = coordinate time 

Expanding and retaining all terms of order 1/c2 gives 

- (1 + g) (dr2 + r2de2 + r2 sin2 ea+*) (7) 

In isotropic rectangular coordinates, 

- (1 + 2) (dx2 + dy2 + dz2) 

where 

r = [x2 + y2 + z2]% (9) 

Fock (Ref. 3) and Yilmaz (Ref. 4) differ from Einstein and 
obtain metrics that differ from Eq. (6). However, when 
expanded, their metrics are identical with Eq. (8) to 
order 1/c2. The small departures of the components of 
the metric tensor in Eq. (8) from the unity values of spe- 
cial relativity in Eq. (3) represent the ‘ccurvature” of 
space-time due to the mass of the central body. 

The trajectory of a massless particle in the gravitational 
field of a massive body is a geodesic curve which extre- 
mizes the integral of ds between two points: 

7 



n order to obtain the equations of motion with coordinate The derivatives E (aL/ax) and L (aL/%) are obtained by 
direct differentiation of L2. For the usual situation where 
only the 1/c2 terms of the relativistic perturbative accel- 
eration are required, 

time t as independent variable, Eq. (10) is written as 

8 L d t = O  (11) 

(19) 
r: LI: L t  
L L2 - c2 
-=-Al- 

s 
where the Lagrangian L is given by 

ds L = -  
dt t 12) 

and L2 is obtained from the expression for ds2 by replac- 
ing differentials of the space coordinates by derivatives 
of the coordinates with respect to t multiplied by dt. The 
Lagrangian L may be obtained by expanding the square 
root of L2 in powers of 1/c2. Given L, the equations of 
motion that extremize the integral (11) are the Euler- 
Lagrange equations: 

aL 
dt a2 ax 
- a (") - --- - 0  x+y,z 

where 

where L2 has been replaced by its leading term c2 and L i  
is obtained by differentiating a simplified expression for 
L2 containing terms to l/co only. Computation of the 
equations of motion from Eqs. (18) and (19) is simpler 
than taking the square root of L2 and using Eq. (13). 

From Eqs. (8), (12), (18), and (19), the relativistic per- 
turbative acceleration of a massless particle moving in 
the gravitational field of one body is given by 

where the dots indicate differentiation with respect to 
coordinate time t .  The position, velocity, and acceleration 

(I4) vectors are given by 

A simpler procedure for obtaining the equations of .. 
motion directly from derivatives of L2 is developed as 

changed by multiplying both terms by L: 
.. follows. The Euler-Lagrange equations (Eq. 13) are un- z z 

Differentiating L (aL/Z&) with respect to t gives 

where 

e dL E = - -  
dt 

of motion are obtained by substituting 
. (16) into Eq. (15): 

B = magnitude of i 

An approximate solution to the field equations for the 
case of a massless particle moving in the gravitational 
field of n massive bodies was first obtained by J. Droste 
in 1916 (Ref. 5). In that same year, W. deSitter ex- 
tended the work of Droste to account for the mass of 
the body whose motion is desired (Ref. 6). However, he 
made a theoretical error in the calculation of one of his 
terms, which was corrected by Eddington and Clark in 

ef. 7). The components of the Droste/deSitter/ 
Eddington and Clark metric are given by (Ref. 7, Eqs. 3.1, 
3.2, and 3.6) 

gll = gzz = 9 3 3  = - (22) 



i#i 

4 - Pi% 
c3 Ti i 

g34 = g43 = - 

Pi - 2 
C2 rii 

i # i  

g44 = 1 - - 

3 # i  k#j 

i#i  

where the indices j and k refer to the n bodies and k 
includes body i whose motion is desired. Also, 

pi = gravitational constant for body j 

= Gmi, where G is the universal gravitational 
constant and mi is the rest mass of body j .  

5 Y 7  2; 

x, y, x - rectangular components of position, velocity, 
and acceleration (4 = dx/dt, etc.) relative to a 
nonrotating frame of reference centered at the 
barycenter of the system of n bodies. The posi- 
tion, velocity, and acceleration vectors are 
given by Eq. (21); they and their components 
are identified by the subscript i, j ,  or k. 

rii = coordinate distance between bodies i and i 

i, tj, i; 
a- *. .. - 

= [(xi - xj)2 + (yi - + ( x i  - 

3 = square of velocity = 2 + c” + i2 

The second partial derivative of rii with respect to t in 
Eq. (27) is obtained holding ri k e d :  

Since terms of order greater than 1/c2 will not be retained 
in the expression for the acceleration of body i, the accel- 

q. (30) may be evaluated from Newtonian 
theory: 

The summation over k # j  includes body i. The four 
space-time coordinates associated with the n-body metric 
are 

x1 = xi  

x2 = yi 

x3 = zi 

x4 = ct 

Hence, from Eq. (2) and Eqs. (22-27), the expression for 
ds2 is 

ds* = c2944 at2 + gll (dxt + dyB + dxB) 

+ 2cgl4 dXi dt + 2cg24 dyi dt + 2cg34 dZi dt 

(33) 
Dividing by dt2 gives the expression for L2: 

L2 = c2g*4 + gll (?H + f/? + if) 
+ 2cg1,2i + 2cg2,$i + 2cg34ii (34) 

The equations of motion for body i are obtained from 
Eqs. (18) and (19) with x and 2 replaced by x i  and 3Ei. 

owever, in carrying out the required differentiations of 
Eq. (34), the contribution to the field from the mass 
of body i must be held fixed. 

Specifkally, the Newtonian potential at each perturb- 
ing body j in the fifth term of g44 (Eq. 27) must be con- 
sidered to be a function of time only. The potential at 
body j due to body i, prc/r jk  with k set equal to i, must not 
be differentiated with respect to xi ,  yi, and x i .  

The last term of g44 is evaluated with 
contains the acceleration of body i given by Eq. (31). The 
acceleration of body j ,  “r;., must also be considered to be a 
function of coordinate time t only. The contribution fram 
the mass of body i must not be differentiated with sespect 
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to xi, yi, and zi. (I am indebted to two relativists at JPL, Dr. Frank B. Estabrook and Dr. Hugo Wahlquist, for pointing 
out these special conditions.) 

The details of the derivation of the expression for the acceleration of body i are given in Appendix A. The h a 1  expres- 
sion for the acceleration of body i relative to the barycenter of the system of n bodies with rectangular components 
referred to a nonrotating coordinate system is given by 

1 
2c2 + - (rj - ri) e Y j  

iti 

where "r; is computed from Eq. (31) and the summation 
over k # i in Eqs. (31) and (35) includes body i. Note that 
the first term of Eq. (35) is the Newtonian acceleration of 
body d. The effect of the mass of body i on its own accel- 
eration is contained in its contribution to the Newtonian 
potential at each perturbing body i (term 3) and in its 
contribution to the Newtonian acceleration of each body j 
(terms 8 and 10). 

A method for obtaining the motion of a system of n 
heavy bodies directly from the field equations, without 
recourse to additional equations such as those of a geo- 
desic, was obtained for the first time by Einstein, Infeld, 
and Hoffman in 1938 (Ref. 8). The method, referred to as 

approximation method, was subsequently per- 
m the mathematical viewpoint in Refs. 9 and 10. 

The EIH method is illustrated in Ref. 8 by obtaining the 
equations of motion for two bodies. The equations for the 
motion of a system of n bodies were obtained from a later 
(1960) work of Infeld and P 
to Baiahski (Ref. 12), the E 

in principle, the only tool in the problem of the motion of 
heavy bodies in the general theory of relativity. 

After deriving the n-body relativistic equations of mo- 
tion, Infeld and Plebahki noticed that these equations 
could be put into the form of a Lagrangian L with the 
equations of motion following from the Euler-Lagrange 
equations : 

where i refers to the body whose motion is desired. The 
Infeld Lagrangian is given in ef. 11, p. 112, Eq. (3.3.37) 
or p. 128, Eq. (4.2.25). The same Lagrangian may be 
found on p. 149 of Ref. 13. 

In the notation used for the de Sitter n-body metric 
(except that the index i, as well as i and k, now refers to 
the n bodies), the Lagrangian is given by 



where 

5 = position vector with components 5' = x, t2 = y, and #3 = x. A repeated superscript implies a summation over 
the values 1, 2, and 3. 

Carrying out the partial derivatives in term five gives two terms, one of which combines with term four. Also, the last 
term contains three identical subterms; two of them may be deleted and the coefficient of the remaining term multiplied 
by three. With these changes, the expression for L becomes 

Pi& ri i j  - 1 3 Pi& 7 
- (BH + 9) - - 

4c2 T i j  4c2 Ti j 
pi ($)2 + - pi i f  + - 1 

8c2 L=z 
i i i j#i i j # i  

This equation, expressed in a slightly different form, may be found in Ref. 14, p. 372. 

The equations of motion (Eq. 36) involve the partial derivatives of the Lagrangian L with respect to the position 
and velocity coordinates of the particular body whose motion is desired. Hence, Eq. (38) will be rewritten with the 
index i referring to the particular body (body i) whose motion is desired and the indices i and k referring to the n 
other bodies (perturbing bodies). For the single-summation terms of Eq. (38), the transformation consists simply of 
removal of the i summation. Since all double-summation terms are unchanged by interchanging the indices i and i, 
they are transformed by removing the i summation and multiplying by two. Terms of the triple summation with the 
index i or k referring to the specific body i are transformed to the original triple-summation term multiplied by two 
with the i summation removed. Terms with the index i referring to the specifk body i are transformed to 

After transformation, the gravitational constant pi may be deleted from each term. Thus, with i now referring to 
the specific body i whose motion is desired, and i and k referring to the other bodies, the Lagrangian L is given by 

The expression for the acceleration of body i is obtained by applying the Euler-Lagrange equation, Eq. (36), to 
Eq. (39) for E. The details are given in Appendix A. The resulting n-body equations of motion, derived from the Infeld 

agrangian, are identical to Eqs. (35) derived from the Droste/de Sitter/Eddington and Clark metric. 



The equations of motion for a massless particle moving 
in the field of one massive body may be obtained by sim- 
plifying the n-body equations of motion (Eq. 35). With 
one perturbing body, its position, velocity, and accelera- 
tion are zero. Also, with the mass of body i, whose motion 
is desired, set equal to zero, the Newtonian potential at 
the perturbing body i is zero. With these simplifications, 
the n-body acceleration (Eq. 35) reduces exactly to the 
acceleration (Eq. 20) obtained from the 1-body isotropic 
metric (Eq. 8). Of course, the components of the n-body 
metric tensor (Eqs. 22-27) reduce to those of the 1-body 
isotropic metric (Eq. 8). Some of the relativity terms of 
the DPODP formulation are derived from the 1-body 
metric, whereas others are obtained from the n-body 
metric. The 1-body isotropic metric was selected since it 
is a special case of the n-body de Sitter metric, or equiva- 
lently the n-body Infeld Lagrangian. The choice of co- 
ordinates in general re€ativity is arbitrary, but the same 
coordinates must be used in all computations. 

The general theory of relativity has been generalized 
by C. Brans and R. H. Dicke (Ref. 15). Supposedly, their 
theory is more in accord with Mach‘s principle than the 
general theory of relativity. According to Mach‘s prin- 
ciple, the inertial forces experienced in an accelerated 
laboratory are gravitational, having their origin in the 
distant matter of the universe accelerated relative to the 
laboratory. Brans and Dicke (Ref. 15) state that “locally 
observed inertial reactions depend upon the mass distri- 
bution of the universe about the point of observation and 
consequently the quantitative aspects of locally observed 
physical laws (as expressed in the physical “constants”) 
are position dependent.” 

The Eotvos experiment was recently repeated at Prince- 
ton University by Dicke et al. and showed that all bodies 
fall with the same acceleration to an accuracy of 1 part 
in loll. Braqs and Dicke concluded from this result that 
the only physical “constant” of their theory (Ref. 15) 
whose value needs to vary with position in the universe 
is the universal constant of gravitation G (see Ref. 16, 
p. 7-8). In order to obtain this variation, they added a 
scalar gravitational field to the tensor field of general 
relativity. The gravitational constant G varies with the 
strength of the scalar field. owever, it can be considered 
constant in the small region of the universe known as the 
solar system. 

icke scalar-tensor theory of gravity, the 
two particles of matter is due partly 

to the tensor field and partly to the scalar field. 

tion of the gravitational attraction due to the scalar field 
is given by 

1 
4 + 2 0  

where w is the coupling constant of the scalar field, a free 
parameter of their theory. It is shown below that 01-6. 
For w = 6, 1/16 of the force of gravity is derived from the 
scalar field and 15/16 is due to the tensor field. 

Because of the expansion of the universe, the strength 
of the scalar field (if it exists) is changing, and G should 
decrease by roughly 1-3 parts in 10l1 per year (Ref. 16, 
p. 107). The variation in G is inconsistent with the strong 
principle of equivalence, which is one of the postulates of 
the general theory of relativity. According to this prin- 
ciple, in a freely falling, nonrotating laboratory, the form 
of the locally determined laws of physics and the values of 
the dimensionless physical constants appearing therein 
do not vary with the position of the laboratory in space 
and time. 

Nutku (Ref. 17) has obtained the post-Newtonian 
equations of hydrodynamics for a nonviscous fluid in the 
scalar-tensor theory of Brans and Dicke. From these 
equations, Estabrook (Ref. 18) has obtained the n-body 
metric tensor, the n-body Lagrangian, and the resulting 
n-body equations of motion. These equations contain 
exactly the same terms as the corresponding equations of 
general relativity; however, the coefficients of these terms, 
which were constant in general relativity, are functions 
of the free parameter a, the coupling constant of the scalar 
field. The value of w must be positive, and, as the value 
of w approaches infinity, the equations of the Brans-Dicke 
theory revert to the corresponding equations of general 
relativity. 

From Ref. 15, the relativistic perihelion rotation rate e’ 
of a planetary orbit is 

* 4+3W e =  [ _____ + 3o ] x [value from general relativity] 

(40) 

ercury, the predicted value from general relativity 
prad (43 arc-seconds)/century, which agrees with 

the solar oblateness re- 
f. 19) would produce an 

of 16 p a d  (3.4 arc sec- 

the observed value. 

onds)/century, leaving only 192 prad (39.6 arc se 
century to be attributed to relativity. The Bran 
theory will produce this perihelion rotation rate for a value 
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roximatelgr equal to 6. Since the true solar oblate- 
en zero and approximately the ness lies somewhe 

value observed by 6 (approximately). 

(47) 2 + 2y & The basic equations of the icke theory are g34 = g43 = 7 
T i j  

given below with coefficients e as functions of j#i 
the parameter Y. where 

1+0 
y = K  

As o increases from zero to infinity, y increases from 1/2 to 
unity (its general relativity value). 

The DPODP will be modified so that the value of the 
parameter y may be estimated. The constant coefficients 
of all existing DPODP relativity terms, derived from the 
general theory of relativity, will be changed to the func- 
tions of y specified in this report. Also, the partial deriva- 
tives of the observables with respect to y specified in 
Section XIV will be added to the program. This will 
enable the value of y to be obtained by fitting the theory 
to observation. Given y, the corresponding value of o is 
given by (see Eq. 41) 

2 
CZ 

g44 = 1 -- 
3 # i  

pjdf - 1 + 2 y  -- 
c4 Ti j 

j # i  

2 +- c4 
i#i k # i  

3 # i  

where a2rij/at2 is given by Eqs. (30) and (31). The coeffi- 
cients 2y, 2 + 2y, and 1 + 2y appearing in Eqs. (43-48) 
above appear as ( 2  + 20) / (2  + 0),  (6 + 40)/(2 + 0), and 
(4 + 30)/(2 + 0), respectively, in Ref. 18. With y equal to 
unity (its general relativity value), the equations above are 
identical to Eqs. (22-27), derived from general relativity. 

If the mass of body i is reduced to zero and the number 
of perturbing bodies is reduced to one, the n-body metric 
tensor reduces to the following diagonal 1-body metric: 

It will be S t ~ n  that the relativity terms of the DPODP 
formulation which are functions of y vary linearly with y. 
Also, it will be seen that the only components of the 
1-body isotropic metric tensor that are functions of 0 are 

unity is proportional to the function (1 + w)/(2 + o). 

is the source of the change of variable to y (Eq. 41). 

gll = gaZ = gSs. The departure of this coefficient from 

parameter y was first used at JPL by Anderson ( 

g11 = gzz = g33 = - 

2P 2P2 g44 = 1 - 2 + - c T C4T2 

ef. 18), the components of the n-body 
here as functions of y )  are using the notation listed after q. (6). In spherical coo 

nates, the expression for the interval is 

g11 = gzz = g83 = - 
i+i 

(45) Setting y equal to unity gives the general relativity 
sion (Eq. 7). 

2 + 2 y  
g14 = g41 = 7 

T i  j 
i#i 
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ef. 18) also gives an expression for the n-body Lagrangian L in the Brans-Dicke theory. Changing the 
coefficients to functions of y (using Eq. 42) and also changing the form of his equation slightly gives 

i i i j#i i j# i  

i j#i k # j , i  

The corresponding equation from the general theory of relativity is Eq. (38); for y = 1, the two expressions are identical. 

Transforming Eq. (52) so that the index i refers to the particular body i whose motion is desired and the indices j and k 
refer to the n other bodies gives 

j#+ 

The corresponding equation from general relativity is Eq. (39). 

In Appendix A, the n-body equations of motion are derived from the n-body metric tensor (Eqs. 43-48) and from the 
agrangian (Eq. 53). The result (also given in Ref. 18) is 

q. (31) and the summation over k+ j in 

the field of one massive body gives the following relativistic perturbative acceleration: 

qs. (31) and (54) includes body i. With y = 1, Eq. (54) 
), derived from general relativity. Simplrfylng Eq. (54) to the case of a massless particle moving in 

[z (1 + y) 5 - @] r + 2(1 + y) ( 8 4 )  i 

or y = 1, this equation is identical to Eq. (ZO), derived from general relativity. 
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The ephemerides of the moon, sun, and planets could 
be obtained by a simultaneous numerical integration 
using Eq. (54). Using these precomputed n-body ephemer- 

P could generate the spacecraft ephemeris 
using Eq. (54) to calculate the point-mass gravitational 
accelerations of the spacecraft and the body which is the 
center of integration. 

However, a number of the relativistic perturbative 
acceleration terms (the 1/c2 terms) would be insignificant. 
For instance, for the heliocentric ephemeris of a planet 
other than the earth, only the perturbative acceleration 
of the planet due to the mass of the sun, computed from 
Eq. ( 5 3 ,  need be considered. Equation (54) is required 
only when a planet or moon is nearby; that is, when one 
is computing the acceleration of the earth, the moon, or 
the spacecraft when it is near the earth and moon or a 
planet. 

The relativistic perturbative acceleration terms required 
are specified in Sections IV and V, which describe the pre- 
computed n-body ephemerides and the spacecraft 
ephemeris. A more detailed discussion of the required 
terms and their effect on the various ephemerides may 
be found in Refs. 21 and 22. 

A brief summary of the effect of general relativity on 
the various ephemerides is as follows. For the orbit of a 
planet, the mean distance a is about 1.5 km less than the 
Newtonian value. Periodic variations in position are pro- 
portional to the eccentricity and range from about 0.2 km 
for Venus and Neptune to about 6 km for Mercury and 
Pluto. Periodic variations in velocity are proportional to 
the product of the mean motion and the eccentricity. 
The largest variation is 4 mm/s for Mercury; the varia- 
tions for the remaining planets are less than 0.25 mm/s, 
which is the value for Mars. 

position and velocity are less than 10 m and 
differential solar relativistic acceleration produces a secu- 
lar variation in the moon’s perigee of 10 prad (2 arc sec- 
onds)/century. 

m/s. 

For the Pioneer VI, Mariner IV, and Mariner V space- 
craft, the periodic variations in position and velocity are 
in the ranges of 3 to 5 km and 0.7 to 1.1 mm/s. The major 
terms of these variations have periods equal to the orbital 
period and one-third of the orbital period. For an earth 
orbiter with a perigee of 7000 km and an eccentricity of 
0.2, the advance of perigee is 39 prad (8 arc seconds)/year. 

The ephemerides for the planets, the earth-moon bary- 
center, the moon, and the spacecraft give the position 
coordinates (and their derivatives with respect to coordi- 
nate time) as a function of coordinate time t. For a given 
proper time T at some point on earth, the time transfor- 
mation t - T is thus required to interpolate the ephem- 
erides. 

The time transformation may be derived from the ex- 
pression for the interval which relates an observed interval 
of proper time T to the changes in the space and time 
coordinates of the atomic clock. Substituting the com- 
ponents of the n-body metric tensor (Eqs. 43 to 48) into 
Eq. (33) for the interval and retaining terms to order 
( l / c ) O  gives 

ds2 = ( 1  - $) c2 dt2 - (d? + dy2 + dx2) (56) 

where x, y, and z may be interpreted as heliocentric coor- 
dinates of the atomic clock, although strictly speaking 
they are referred to the barycenter, and + is the New- 
tonian potential at the clock given by 

(57) 
The primary terms of the periodic Variations in position 

and velocity have periods equal to the orbital period and 
one-third the orbital period. The only significant secular 
variation in the orbital elements is the advance of peri- 
helion, which amounts to the well known value of 208 
prad (43 arc seconds)/century for Mercury. 

j 

where ri is the coordinate distance from the clock to 
body i. Expressing the second term of Eq. (56) as the 
square of the heliocentric velocity of the clock i multi- 
plied by dt2 and using Eq. (5) gives 

For the orbit of the moon relative to the earth, the mean 
distance is about 8 m less than the Newtonian value (using 
the same values for the gravitational constants of the earth H 

(58) and moon). Maximum values of the periodic variations in dt  

7% T 7 



Since l/c4 terms are ignored, Note that dr is obtained as dN cycles from the observer’s 
atomic clock divided by the conversion factor n cycles/s. 
If the conversion factor is changed to n*, where 

(59) 
dr -.wl---- 
dt 

(622) n * = n  ( I - - - - -  ct ;:) 
Equation (59) relates an interval of proper time (ob- 
tained from the observer’s atomic clock) to the corre- 
sponding interval of coordinate time t, the Newtonian 
potential at the clock, and the heliocentric velocity of 
the clock. dr* 

and proper time is obtained as dN/n* and denoted by 
dr*, then Eq. (61) may be written as 

- + - F  1 b 2 - 8 2  
(63) -= 1 - -- -- 

dt C2 2 c2 
Coordinate time t may be considered to be a uniform 

system of time that pervades the nonrotating heliocentric 
frame of reference. For a fixed atomic clock at infinite 
distance from the sun, + = i = 0 and dr = dt. That is, 
the atomic clock runs at the rate of a coordinate clock 
(a clock yielding coordinate t h e  t). This condition and 
the length of the coordinate time second fixes the conver- 
sion factor (n cycles/second) used to convert cycles or 
ticks from the observer’s atomic clock to seconds of proper 
time 7. From Eq. (59), the rate of an atomic clock de- 
creases as the Newtonian potential at the clock and the 
heliocentric velocity of the clock increase. 

For a fixed atomic clock on earth, dr < dt, and proper 
time 
simple expedient of choosing a different number of cycles 
from the observer’s atomic clock per second of proper 
time, the latter can be made to agree on the average with 
coordinate time t. Equation (59) may be written as 

falls behind coordinate time t. 

where 

6 = time average of + 

3 = time average of $2 

Thus proper time r* obtained from the observer’s atomic 
clock using the conversion factor n* cycles/s will, on the 
average, agree with coordinate time t. Periodic variations 
in r* from t are due to variations in + and 2 from their 
average values. 

Coordinate time t is the independent variable for the 
equations of motion and is commonly referred to as 
ephemeris time ET. The A1 atomic time scale on earth 
is based upon oscillations of a cesium atomic clock. The 
adopted length of the A1 second is fcesium = 9,192,631,770 
cycles of cesium, which is the current experimentally 
determined average length of the ET second.2 In the 
DPODP, the true average length of the ET second is 
represented by fcesium + L\fcesium cycles of cesium. The 
quantity Afcesium iS a solve-for parameter; its value is 
probably no more than two or three cycles. The quantity 
fcesillm f Afcesium is the length of the T* second and hence 

dA1 fcesium + Afcesium Afcesium = 1 + -  
dr* fcesium fcesium 
-= 

The quantity dAl/dET is the product of this equation 
and Eq. (63), which is given to sufficient accuracy by 

where + is the Newtonian potential at a particular A1 
atomic clock and is the heliocentric velocity of the 

Ignoring l/c4 terms, this may be written as atomic clock. 

2Interpolation of the lunar ephemeris with an observed longitude of 
the moon gives the value of the independent variable, ET. The 

C2 2 c2 value of dfCeslUm given above was determined by counting cycles 
of a cesium atomic clock between two obsewations of the moon 
separated by 10 years and dividing the observed number of cycles 
by the “observed” ET interval. 

- + - F  1 ; 2 - ; 2  - - 1 - -- -- a7 

(61) 



Appendix B, equations are generated for the 
of + and 2 from their average values, and E 

is integrated to give an expression for T - Al. The ini- 
tial conditions were evaluated by considering the method 
by which the A1 atomic time scale was set up. The master 
A was set equal to UT2s on January 1, 1958, 
oh A1 clock. at other locations are synchro- 
nized with the masten clock by means of radio signals, 
accounting for the propagation delay, or by means of a 
traveling clock, or by other methods. Hence, the average 
offset between A1 time and ET is the same for all A1 
clocks. The resulting expression for ET - A1 (in units of 
seconds) is 

Afcesium 

foesium 
- (t - 252,460,800) 

+ 1.658 X sin E 

+ 0.317679 X u sin (UT + A) 

+ 5.341 X 10-l' u sin (UT + h - M) 
+ 1.01 x 10-13 u sin (UT + A - 2 ~ )  

- 1.3640 X 1O-I' u sin (UT + h + 2L) 

- 2.27 X 

+ 1.672 X 10-6sinD 

u sin (UT + h + 2L -I- M) 

+ 1.38 x 10-13 u sin (UT + A - D) (a) 
where 

AT1958 = ET - UT2 on January 1,1958, 
Oh Om 0" UT2 minus the periodic 
terms of Eq. (65) evaluated at this 
epoch using u and of the master 
A1 clock. The master A1 clock was 
set equal to UT2 on this date. The 
parameter AT1958 may be estimated 
by the DPODP 

fcesfum = 9,192,631,770 cycles of cesium 
atomic clock per second of A1 time 
(definition). This adopted length of 
the A1 second is the current 
experimentally determined average 
length of the ET second 

fcesium + Affeesium cycles of cesium atomic clock per 
ephemeris second. The parameter 
Afces may be estimated by the 

3The UT2 time scale is described in Section 111. 

PQDP; its current nominal value 
IS zero 

to January 1,1958, Oh 

M = mean anomaly of heliocentric orbit 
of earth-moon barycenter 

E = eccentric anomaly of heliocentric 
orbit of earth-moon barycenter 

L = geometric mean longitude of the 
sun, referred to mean equinox and 
ecliptic of date 

D = C - L = mean elongation of the 
moon from the sun, where 

a = mean longitude of the moon, 
measured in the ecliptic from the 
mean equinox of date to the mean 
ascending node of the lunar orbit, 
and then along the orbit 

u = distance of atomic clock from earth's 
spin axis, km 

h = east longitude of atomic clock 

converted to radians. It is 
computed from 

UT = universal time, hours past midnight, 

(66) 
UT1 

UT = %r [-] 
86,400 decimal part 

where UT1 = seconds of UT14 time past January 1,1950, 
OhUT1. The angles N, L, and D in radians are given by 

M = 6.248291 + 1.99096871 X lo-? t 

L = 4.888339 + 1.99106383 X lo-? t 

D = 2.518410 + 2.462600818 X 

(67) 

(68) 

(69) 

To a sufficient degree of accuracy, the eccentric anomaly 
E is given by 

E z M S  esinM (70) 

where 

e = eccentricity of heliocentric orbit of earth-moon 
barycenter = 0.01672 

4The UT1 time scale is described in Section 111. 
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Term 4 of Eq. (65) is the sum of two terms with coeffi- 
cients of 0.318549 and -0.000870. The larger term arises 
from the dairy variation in the heliocentric velocity of the 
atomic clock, while the smaller term accounts for the 

coordinates selected. This is also true for light with the 
additional condition that ds = 0. Thus, light moves along 
a null geodesic. 

diurnal variation in potential. The expression for ET - A1 
used in the current version of the DPO 
first three terms of Eq. (65) and the following term de- 
rived by J. D. Anderson (Ref. 20): 

The equations of a geodesic are the Eul 
equations which extremize the integral of ds between two 
points. When Eq. (10) is written as Eqs. (11) and (121, 
the Euler-Lagrange Eq. (13) or (18) gives the second- 
order differential equations for the three position coordi- 
nates with coordinate time t as independent variable. 
However, if proper time s is taken as the independent 

are obtained for the three position 
coordinates and also for coordinate time t. The equation 
for the fourth coordinate is required in the derivation of 
the light time equation. Eq. (10) may be expressed as 

2.03 X le6 cos 4 sin (UT + A) 

where 4 is the latitude of the atomic clock. Anderson’s 
term is the fourth term Of Eq* (”1 with the coefficient 
of 0.318549 mentioned above and r8 set equal to 6372 
km cos +. 

Changing Anderson’s diurnal term to the fourth term 
of Eq. (65) and addition of the last six terms of Eq. (65) 
is required to implement the change to the current version 
of the program specified in Section XI, namely, the com- 
putation of doppler observables from differenced range 
observables divided by the count time. The contribution 
to “differenced-range” doppler from a term of ET - A1 
is approximately equal to the second time derivative of 
the term multiplied by the spacecraft range. All terms 
affecting “differenced-range” doppler by more than 
2 X 10-~ m/s per astronomical unit of distance from the 
tracking station to the spacecraft were retained in Eq. (65). 
Terms of ET - A1 which could be derived from the I/c4 
terms of dr/dt would be at least eight orders of magnitude 
smaller than the terms of Eq. (65). Their contribution to 
differenced-range doppler would be several orders of 
magnitude less than the criterion above. Hence, there is 
no requirement for l/c4 terms in the expression for 
ET - Al.  

In order to compute doppler, range, and angular ob- 
servables, the time for light to travel from the transmitting 
station on earth to the spacecraft, and from there to the 
receiving station on earth, must be computed. Thus, an 
equation is required which relates the position coordinates 
of two points to the coordinate time t for light to travel 
from one of the points to the other. This equation will 
be referred to as the light time equation. It will be derived 
from Eq. (51), the 1-body expression for the interval in 

icke theory. Thus, the effects of the masses 
of the planets and the moon on the propagation time are 
neglected. 

8 / 2 d s  = 0 

where 

From Eq. (51), 

dt 

The Euler-Lagrange equations for q = r, 0, +, or t are 

The equation for e is 

A massless particle moves on a geodesic curve in the 
four-dimensional geometry of spap+time, which is deter- 
mined by the distribution of matter and the system of 

If coordinates are chosen so that a particle moves ini- 
tially in the plane 0 = n/2, then de/& = 0 and Eq. (75) 
gives the result that dze/ds2 = 0. s, in the %-body 



problem, the motion of particles and of light is planar, 
and the equations may be simplified by setting 

ntegrating between limits of (r, .p) and (R, 0) and ignor- 
ing l/c4 terms gives 

e = 4 2  

(1 + Y) P Since 2 is explicitly independent of t and +, first 
integrals of Eq. (74) for q = t and .p are given by 
a 2 / a  (dt/ds) = constant, and (&/ds) = constant. 

= +cos-1 [E, c2 - (1 + Y I P  
CZR r 

Differentiating Eq. (73) accordingly with e = r/2 and 
making use of the fact that Q = 1 gives 

where the plus sign applies for increasing r and the minus 
sign applies for decreasing r. When T approaches a in 

dt constant -= 
2 P  2P2 1 - - + -  c2r c4r2 

ds 

and 

d+ - constant -- 

Dividing Eq. (77) by Eq. (78) and ignoring l/c4 terms 
gives 

Setting ds = 0 and e = z/2 in Eq. (51) gives 

Substituting dt from Eq. (79) into Eq. (80), setting 
dr/d+ = 0 when r = R (the minimum value of r on the 
light path), and ignoring l/c4 terms gives 

Eq. (82), the angle + will approach one of the two asymp- 
totic values: 

The angle between the incoming and outgoing asymp- 
totes is thus 

For general relativity, y = 1 and A+ = 4p/c2R, which 
has a maximum value of 8.48 prad (1.75 arc seconds) 
when R is set equal to the radius of the sun, 695,500 km. 
Figure 2 shows the curved path of a photon passing the 
sun S. Light is moving in the positive y direction and 
the point of closest approach occurs at x = R, y = 0. The 
polar coordinates (r ,  +) and rectangular coordinates (x, y) 
of two points on the light path are shown along with the 
straight line path (of length r12) joining these two points. 
The y intercept was obtained from Eq. (82) by setting 
cos+ equal to zero; the x intercept of the asymptotes fol- 
lows from the y intercept and the angle of the asymptote. 

Given that light moves in a plane along the curved 
path (Eq. 82), the light time equation may be derived 
by two alternative methods. The first method consists of 
substituting d+ from Eq. (79) into Eq. ( 
tion between dr and dt. Integration 
equation. The second method is a direct integration of 
the differential of coordinate distance divided by the 
coordinate speed of light oc along the light path between 
two points. For planar motion, the space coordinates of 
a photon change by dr and d+ in coordinate time dt. 

ence, an expression for the square of the coordinate 
velocity uc is 

4): = 



/ 
X 

Dividing Eq. (80) by dt2, substituting Eq. (S), and igBor- 
ing l/c4 terms gives 

The coordinate speed of light v, decreases slightly as 
the photon approaches the sun. The Newtonian light time 
between two points is the straight-line Coordinate distance 
between them, divided by the speed of light c. However, 
since v, <cy the actual light time will be longer; the 
additional time is of order l/c3. 

The direct effect of the bending of light upon the light 
time is the increase in the path length divided by the 
nominal velocity c. The maximum angle between the 
straight line path between two points and the curved 

geodesic path is the bending, 2 (1 + y )  p/c2R. If the nom- 
inal length of the light path is 1, the difference in length 
between the curved and straight line paths will satisfy 
the inequality 

which is of order l/c4. Thus, the direct effect of the bend- 
ing of light on the light time is an additional term of 
order 1 p .  

The indirect effect of the bending of light is to alter 
the value of T used in Eq. (86) by a term of order 1/c2. 
The coordinate velocity divided by c along the curved 
geodesic path will differ from the corresponding value 
along the straight line path by a term of order 1/c4. Thus, 
the indirect effect of the bending of light upon the light 
time is the same order as the direct effect, namely l/c5. 

Since all terms of order l/c5 and greater are ignored 
in the light time equation, it is obtained by integrating 
the differential of coordinate distance divided by B, along 
the straight line path joining two points. 

Both of the above-mentioned derivations of the light 
time equation are given in Appendix C. In either case, the 
resulting light time equation is 

where light travels from point i at coordinate time (ephem- 
eris time) ti to point i at coordinate time t i ,  and 

~ i j  = 11 ry (ti) - e (ti) I [  
= 11 ~7 (t i)  11 

ri = II r;(ti) I1 
e (ti),  6 (ti) = heliocentric position vectors of point i 

at transmission time ti (ET) and point i 
at reception time ti (ET), respectively, 
with rectangular components referred 
to a nonrotating frame of reference 

p = gravitational constant of sun, km3/s2 

is form for the relativistic perturbation of the light 
was derived independ 
ulsion Laboratory by 



er, it had been ed a year earlier by 
f. 24, Eq. 6-105). two alternative forms, see 

Appendix C. 

As discussed in detail in Section X, the relativistic cor- 
rection to the light time becomes as large as 36 km/c 
when the spacecraft approaches superior conjunction and 
the minimum distance from the light path to the surface 
of the sun becomes very small. This effect is seen directly 
in range observables and is the only really large effect of 
general relativity on earth-based tracking data. 

The most accurate observables computed by the 
DPODP and observed by the Deep Space Network are 
round-trip range and two-way doppler data. The remain- 
der of this section wiIl summarize briefly the procedure 
for computation of these observables from a relativistic 
point of view. 

The observables are defined as follows, A signal is trans- 
mitted from the tracking station at coordinate time tl  
(proper time rl), received and retransmitted by the space- 
craft at coordinate time tz ,  and received by the tracking 
station at coordinate time t3 (proper time r3).  The range 
observable is the elapsed round-trip proper time r3 - rl. 
For purposes of this discussion, two-way doppler may 
be considered to be the ratio of the received frequency f R  

to the transmitted frequency f T .  In actuality, it is the 
average value of 1 - ( f R / f T )  over a period of time called 
the count time. 

and its heliocentric position and velocity at t2. Similarly, 
solution of the light time equation for the up leg of the 
light path gives the transmission time tl  and the helio- 
centric position and velocity of the tracking station at tl. 

For the range observable, Eq. (65) is used to convert 
the round-trip light time from an accurate value of the 
coordinate time interval (t3 - t l )  to the observed proper 
time interval 7 3  - rl .  The doppler observable is 

where dn cycles are transmitted in the interval of proper 
time dr, and received in the interval dr3. The ratio of 
received to transmitted frequency is computed from 

- _ -  f R  

f T  

($)3 

The ratios dtl/dt2 and dt2/dt3 are obtained by differen- 
tiation of the light time equations for the up and down 
legs, respectively, of the light path. The dr/dt ratio is 
evaluated at tl and t3 from Eq. (59). 

All observable quantities are functions of intervals of 
the observer’s proper coordinates associated with his local 
space-time frame of reference. The range and two-way 
doppler observables are functions of intervals of proper 
time r only, namely 73-71 and dTl/d73, respectively. Thus, 
the computation of observables will always involve a 
transformation from the space and time coordinates of 
the frame of reference in which the motion of bodies 
and of light is represented mathematically to the observ- 
er’s proper coordinates. 

As previously mentioned, the precomputed ephemerides 
for the planets, the earth-moon barycenter, and the moon 
are obtained, in principle, by a simultaneous numerical 
integration using Eq. (54). Given the estimated values of 
the spacecraft injection conditions and other parameters, 
the spacecraft ephemeris is integrated numerically using 
Eq. (54) to compute the point mass gravitational accel- 
erations, These ephemerides give the position coordinates 
and their derivatives with respect to coordinate time as a 
function of coordinate time t. Given the ephemerides, the 
first step in the computation of each observable quantity 
is the solution of the light time problem. Equation (65) is 
used to convert the reception time r3 for each observable 
to coordinate time (ephemeris time) t3, and the heliocen- 
tric position and velocity of the tracking station are com- 
puted at this epoch. 

the- numericaf values of the computed observables are 
independent of the frame of reference and system of 
coordinates selected. 

Solution of the light time equation (Eq. 88) for the 
down leg of the light path gives the spacecraft time tz 

Theoretically, the frame of reference and the coordi- 
nates selected are arbitrary. The relativistic terms in the 
equations of motion (Eq. 54), the light time equation 
(Eq. 88), and the transformation from coordinate time to 
proper time (Eq. 65) will vary with the frame of reference 
and system of coordinates selected. In general, the nu- 
merical values of the various constants, obtained by fit- 
ting the theory to observations, will also vary. 



ewe, UT is a function only of eM: 
section describes the systems of time used in the 

P and gives the formulas for transforming between 6p = UT + Ru(UT) - 12h O L 6 , ,  U 
these time scales. (92) 

(Note that any integer multiple of 24 h may be added to 
the right-hand side, and hence the term could also 

]rSk e 

The DPODP uses the five systems of time discussed be written as +E..) 
below. 

* EP . This is a uniform measure of 
time which is synonymous with coordinate time t of the 
general theory of relativity. It is the independent variable 
for the motion of bodies and of light rays in the bary- 
centric space-time frame of reference. The represented 
motion is strictly mathematical in the sense that the 
three position coordinates and their independent variable 
(coordinate time) are not observable. However, the values 
of observable quantities computed using these coordi- 
nates are invariant with the selection of coordinates. Thus, 
the selection is arbitrary. Ephemeris time differs from 
the other four time scales of the DPODP since it is an 
abstract, unobservable time scale. 

2. Atomic time (AI). This is derived from oscillations 
of a cesium atomic clock. The value of A1 was set equal 
to UT2 on January 1, 1958, OhOmOS UT2. The adopted 
length of the A1 second is 9,192,631,770 cycles of cesium, 
which is the current experimentally determined average 
length of the ET second. 

3. Universal time (UT) (specifically UTO, UTI, OT 

UT2). This is the measure of time which is the basis for 
all civil time-keeping. Universal time is defined in Ref. 25, 
p. 73 (the differences between WTO, UT1, and UT2 will 
be described below) as 12 h plus the Greenwich hour 
angle of a point on the true equator whose right ascen- 
sion measured from the mean equinox of date is: 

RU (UT) = 18h38m45!836 + 8,640,184S542TU + 0%929T& 

(91) 

Universal time is obtained from meridian transits of 
stars, observed in practice with a photographic zenith 
tube (PZT). At the instant of meridian transit, the right 
ascension of the observing station is equal to that of the 
observed star, relative to the true equator and equinox of 
date. Subtracting the east longitude of the observing sta- 
tion gives the true Greenwich sidereal time 6 at the instant 
of observation: 

6 = true Greenwich sidereal time, the Greenwich hour 
angle of the true equinox of date 

Subtracting the nutation in right ascension (Ref. 25, p. 43) 
gives Greenwich mean sidereal time BM. Solving Eq. (92) 
gives the value of UT at the instant of observation. Each 
observing station has a nominal value of longitude used 
for computing UT; if this nominal value is used, the re- 
sulting UT is labeled UTO. Because the pole wanders, 
the latitude and longitude of a fixed point on the earth 
are a function of time.5 Using the true longitude of the 
observing station at the observation time, the resulting 
UT is labeled UT1. There are fairly predictable seasonal 
fluctuations in UT1; if the adopted seasonal correction is 
added to UT1, the resulting time is labeled UT2. 

The DPODP uses only U 1. It takes the value of UT1 
supplied by the U.S. Naval Observatory and computes 
By from Eq. (92). Adding the nutation in right ascension 
gives 8,  which is used to compute the position of a track- 
ing station relative to the true equator and equinox of the 
date of observation. 

where a& Uniuersal time (UTC). This is Greenwich 
civil time, which is an approximation of WT2; UTC is 
derived from oscillations of a cesium atomic clock. It is 
broadcast from several stations of the National Bureau of 

Tu = number of Julian centuries of 36,525 days of UT 
elapsed since January 0,1900, 12hUT 

Standards such as 
onds pulses are the length of 9,192,631,770 (1 - S )  cycles 
of cesium. 

The Greenwich hour angle of this point is e, - RU (U 
where 

Bp = Greenwich mean sidereal time, the Greenwich 
hour angle of the mean equinox of date 5See Subsection VII-B-1. 
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e value of the frequency offset S is adopted annu- 
ally by international agreement. Since 1964, the value 
of S must be a positive or negative integral multiple of 

. 26, p. 306). For the years 1960 to 1969, 
the annual values of S were -150, -150, -130, -130, 
-150, -150, -300, -300, -300, and -300 X 10-lo, 
respectively. At Oh UTC on the first day of any month, 
UT@ may be advanced or retarded by exactly 0.100 s 
(Ref. 26, p. 307). These step adjustments to broadcast 
UTC are announced in advance. The frequency offsets 
and step adjustments are selected so that broadcast UTC 
will deviate from UT2 by no more than a few tenths of a 
second. 

5. S t a h a  h e  (ST). This is the operational time scale 
at each tracking station derived from oscillations of a 
rubidium atomic clock. The ST second is ideally equal to 
the UTC second. Also, the ST clocks are stepped along 
with the step adjustments in UTC. Currently, ST at each 
tracking station departs from UTC by less than 100 ps 
and is known to 10-20 ps. The value of the UTC-ST offset 
is determined by using a traveling UTC clock (previously 
synchronized with the National Bureau of Standards) or 
by transmitting a timing signal (derived from the master 
UTC clock of the DSN) from the Deep Space Communi- 
cations Complex at Goldstone, Calif., to a particular track- 
ing station via moon bounce (accounting for the fairly 
well known propagation delay). The traveling clock pro- 
vides UTGST to 5ps or better, while the moon bounce 
currently provides an accuracy of about 20 ps. 

In the DPQDP, time is represented as double-precision 
seconds past January 1, 1950, Oh. On the IBM 7094 com- 
puter, double precision is 54 bits or slightly more than 
16 decimal digits; from 1967 to 1984, time is represented to 
0.6 X s. If UTC is 600,000,000 s past January 1, 1950, 
Oh UTC, and ET - UTC = 40 s, then ET is 600,000,040 s 
past January 1, 1950, Oh ET. 

e5 

The complete transformation between A1 time and 
is given by Eq. (65). The terms of Eq. (65) are defined 
in detail after that equation. The first term, AT1958, is the 
constant part of the offset between A1 time and ET. The 
second term accounts a possible difference in the aver- 
age length of the E second (9,192,631,470 + Afcesium 
cycles of cesium) and the length of the A1 second 
(9,192,631,770 cycles of cesium). The nominal values of 
 AT^^^^ and Afcesium are 32.15 s and 0, respectively; both 
are solve-for parameters. 

The remaining terms of Eq. (65) arise horn general 
relativity; they represent periodic variations in proper 
time on earth (namely the Al,  U , and ST atomic time 
scales) relative to uniform coordinate time t (ephemeris 
time ET). These variations in proper time relative to 
coordinate time are due to variations in the Newtonian 
potential at the atomic clock and in the heliocentric 
velocity of the atomic clock (see Eq. 64). 

In the computation of the range observables used to 
compute differenced-range doppler (see Section XI), the 
complete expression for ET - A1 (Eq. 65) is required to 
accurately transform round-trip ephemeris time from the 
light time solution to observed round-trip station time. 
However, in the general time transformation subroutine 
of the DPODP, only the annual relativity term of ET- A1 
has been retained. The expression, giving ET - A1 in 
seconds, is 

Affcesium 
- (t - 25274607800) 9,192,631,770 ET - A1 = AT1958 

+ 1.658 X sin E (93) 

where E is computed from Eqs. (67) and (70). 

The largest terms of ET - A1 neglected in Eq. (93) 
are the 2-ps daily term (the fourth term of Eq. 65) and 
the 1.7-ps monthly term. Also, there are long period vari- 
ations of the same approximate magnitude due to periodic 
variations in the heliocentric orbital elements of the earth- 
moon barycenter arising from perturbations from the other 
planets. Thus, the accuracy of ET - A1 computed from 
Eq. (93) in the general time transformation subroutine 
is about s. 

The remaining transformations between the various 
time scales are specified by linear or quadratic functions 
of time t .  The coefficients of these polynomials are speci- 
fied by time block and the argument t is seconds past the 
start of the time block. Thus 

UTG - ST = a  + bt + ct2 (94) 

(95) 

A1 - UT1 = f  + g t  + ht' (96) 

Equations (93-96) are used to transform in either direc- 
tion, the right-hand side being evaluated with the known 
time. For instance, Eq. (95) is evaluated with UTC when 
transforming from a UTC epoch to the corresponding A1 
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epoch. Alternatively, it is evaluated with A1 time when 
transforming from an A1 epoch to a UT@ epoch. 

As previously indicated, observed values of UTC - ST 
are available for each tracking statioh. Values of a, b, 
and c may be obtained by fitting to these data. The value 
of UTC - ST is typically less than 100 ps and is known 
to 10-20 ps. The coefficients a, by and c are solve-for 
parameters; however, it is doubtful if the estimated values 
of a, by and c would yield UTC - ST more accurately 
than the observed accuracy of 10-20 ps. 

The U.S. Naval Observatory supplies values of 
A1 - UTC and A 1  - UT1 to the nearest 0.1 ms. Curve- 
fitting techniques are used to obtain the polynomial co- 
efficients d through h by time block, normally of 1 month's 
duration. Real-time reduction of tracking data is accom- 
plished by using extrapolated polynomials for the current 
month. 

The fitted expressions for A1 - UTC are probably accu- 
rate to about 2 X s. A more accurate expression could 
be obtained by fitting to the data published by the Na- 
tional Bureau of Standards (to the nearest ps) or, better 
yet, by computing the expression directly from the known 
frequency offsets and step adjustments. The published 
data are obtained in this manner. 

A small error is incurred in the evaluation of Eqs. (93) 
to (96) since each may be evaluated with either of the 
two time scales which it relates. The largest error occurs 
in the evaluation of Eq. (95) or (96) where e and g are 
about 0.3 X h is about 10-15, and t may be as large 
as 3 X lo6 s. Since 1 vanes by about 8 s, depending upon 
whether it is evaluated with A1 or UT, the resulting 
uncertainty in A1 - UTC or A1 - UT1 is about 2 to 
3 x 10-7 s. 

e observables are recorded in ST. In order to obtain 
the computed values of the observables, the ephemerides 
of the spacecraft, planets, and moon which affect the 
observables must be interpolated at the ET value of the 
epoch of observation, obtained from the ST epoch by 
using Eqs. (93-95). Since Eq. (93) could be in error 
by 10 p and each of Eqs. (94) and (95) could be in error 
by 20 ps, the ET value of the epoch of observation could 
be in error by as much as 5 X s. 

The error in the computed value of a range observable 
due to an error of 5 X s in the ET epoch at which it is 
evaluated is the spacecraft range rate multiplied by 

5 X s. For a typical range rate of 30 km/s, the error 
in computed range is 1.5 m, which is close to the desired 
accuracy of 0.1 m. The largest conceivable range rate is 
about 1000 km/s, which can occur for the spacecraft on a 
hyperbola grazing the solar surface. For this extreme case, 
the error in computed range is an acceptable 50 m. Thus, 
an accuracy of about s in the individual time trans- 
formations is acceptable for the accurate computation of 
range observables. 

The maximum error in the computed value of a doppler 
observable due to an error of 5 X s in the ET epoch 
at which it is evaluated is the acceleration of the space- 
craft relative to the tracking station multiplied by 
5 X lo-" s. During heliocentric cruise, this acceleration 
is less than 0.1 m/s2, and the error in computed doppler 
is less than 5 X m/s. This compares favorably with 
the desired accuracy of m/s. 

However, for a grazing encounter with Venus or Jupiter, 
or an approach to within 1 solar radius of the sun's SUI- 

face, the accelerations are 9 m/s2, 25 m/s2, and 70 m/s2, 
respectively. For a 5 X s timing error, the errors in 
computed doppler observables are 5 X 
m/s, and 3.5 X m/s, respectively. These doppler re- 
siduals are one to two orders of magnitude larger than 
desired. With good tracking data, doppler residuals are 
often obtained with a maximum value of about m/s. 
Thus, during heliocentric cruise, a timing accuracy of 
5 X s is adequate for the accurate computation of 
doppler observables. But, when the spacecraft is near a 
planet or the sun, this timing accuracy is only marginally 
acceptable. 

m/s, 1.3 X 

When the offset from UTC to ST at each tracking sta- 
tion is known to significantly better than the current 
accuracy of 10-20 ps, one of the two previously indicated 
methods for increasing the accuracy of the A1 - UTC 
time transformation should be implemented. The next step 
in increasing the accuracy of the time transformations 
would be to add the 2-ps daily term and the 1.7-ps 
monthly term to the expression for ET - A1 used in the 
general time transformation subroutine. Evaluation of the 
daily term would require that each A1 and UTG epoch 
be associated with a particular tracking station and that 
the location of the station be input to the subroutine. 

owever, there is no point in attempting to obtain time 
transformations much more accurate than the microsec- 
ond level, because of the unknown long period fluctua- 
tions of order s in ET - Al. 



e value of A1 - UT1 computed from Eq. (96) at any 
instant defines the location of the Oo meridian on earth 
at that instant. Over a short period of time from this 
epoch (a few weeks or months), the angular position of 
this meridian computed from Eqs. (96) and (92) will de- 
part in a random manner from its actual position by an 
angle equivalent to an error of 5-8 m (1 sigma) in UT1. 
n addition to this random error in U 1, there may be a 

secular error of a few milliseconds per year. The geo- 
centric velocity of a tracking station on the equator is 
465 m/s. Hence, the random error in UT1 of 5-8 ms (1 
sigma) produces fluctuations in the computed right ascen- 
sions of tracking stations of 2-4 m (1 sigma).6 A secular 
error in UT1 of 2 ms per year would cause the estimated 
station longitudes to drift by about 1 m per year.g These 
errors are large in relation to the current goal of obtain- 
ing station locations to an accuracy of 1 m. Currently, the 
uncertainties in the estimated tracking station locations 
are about 5 m (see Mottinger, Ref. 27). 

For further details on the subject of timing, see Trask 
and Muller (Ref. 28) and Ref. 29, Sections 11-E and 11-F. 

Section IV-A describes the precomputed n-body ephem- 
erides for the celestial bodies of the solar system and the 
manner in which they were generated. Section IV-B de- 
scribes the method by which these ephemerides are dif- 
ferentially corrected within the DPODP and gives the 
formulation for obtaining corrected position, velocity, 
acceleration, and jerk from any ephemeris. Section C gives 
the formulas for combining these quantities to obtain the 
relative position, velocity, acceleration, and jerk between 
any two celestial bodies of the solar system. 

Acceleration and jerk are required to compute doppler 
observables. Acceleration is also used in the computation 
of partial derivatives of the observables with respect to 
the estimated parameters. 

ses the following precomputed posi- 
tion and velocity ephemerides for the celestial bodies of 
the solar system: (1) heliocentric ephemerides for eight 
planets and the earth-moon barycenter and (2) the geo- 
centric lunar ephemeris. The lunar ephemeris is obtained 
by a numerical integration fit to a corrected version of 
the Improved Brown Lunar Theory, as will be described 

GThe angular error multiplied by the distance of the tracking station 
from the earth’s spin axis. 

in detail below. Given the precomputed ephemeris of the 
moon, the planetary ephemerides are obtained by a simul- 

a Processing System). 
a1 integration performed by the SS 

Values of a number of parameters are differentially 
corrected to produce a least-squares fit to observed angu- 
lar data for all of the planets and the sun, radar range 

ercury, Venus, and Mars, and ranging data to 
a spacecraft when it is in the vicinity of a planet. The 
parameters whose values may be estimated are (1) oscu- 
lating orbital elements for each ephemeris, (2) osculating 
orbital elements for the trajectory of the spacecraft rela- 
tive to the planet it is passing, (3) masses of the planets, 
(4) radii of planets which have been tracked by radar 
ranging, (5) right ascension and declination limb biases 
for Mercury and Venus, and (6) the astronomical unit. 

The equations of motion are Newton’s equations plus 
relativistic perturbative accelerations derived from the 
1-body metric of the Brans-Dicke theory. When the 
solve-for parameter y approaches unity, this metric re- 
duces to the 1-body isotropic metric of general relativity. 
Development Ephemeris 69 (DE69), which is the latest 
export ephemeris produced at JPL, is the first to be based 
upon isotropic relativistic coordinates. Previous ephem- 
erides were based upon the Schwarzschild coordinates of 
general relativity. This permanent change was made so 
that the precomputed n-body ephemerides would be com- 
patible with the DPODP, which is based upon isotropic 
coordinates. 

The ephemeris DE69 is based upon a 60-year back- 
ward integration from the epoch of August 2, 1970, Oh ET 
to 1910. The observations consist of over 34,000 optical 
observations of the planets (except Pluto) and the sun 
obtained from the 150-mm and 230-mm transit circles of 
the U.S. Naval Observatory for 1910-1968, radar range 
data for Mercury, Venus, and Mars for 1964-1968, and 
range observables for the Muriner V spacecraft near its 
encounter with Venus (data for June 21-November 12, 
1967). After being fitted to these data, the ephemerides 
were integrated forward from the 1970 epoch to 1976. 

E69 consists of the latter portion of the 
60-year integration from October 28, 1961, to the 1970 
epoch and the forward integration from this epoch to 
January 23,1976. The lunar ephemeris contained in 
is Lunar Ephemeris 16 (LE16), described below; BE69 is 
described in Ref. 30. 

An easy way to describe E16 is to consider the evolu- 
tion of LE4 (Ref. 31) through LE6 ( 



(Ref. 33). The Improved 
is the result of removing certain deficiencies in the orig- 

(Refs. 35 and 36). Brown’s solu- 
tion for the motion of the moon was obtained in rotating 
rectangular coordinates and then transformed to spherical 
coordinates. Because precise observations were not avail- 
able in his time, Brown evaluated this coordinate trans- 
formation with less accuracy than he used in his solution 
for the moon’s motion. 

‘Xlhese coordinate transformations have recently been 
recomputed to a higher precision by Eckert, Walker, and 
Eckert (Ref. 34). Eckert and Smith (Ref. 38) have ob- 
tained a numerical general theory for the motion of the 
moon that is independent of the Brown Lunar Theory. 
From a comparison of the two theories, Eckert has recom- 
mended that the ILE be augmented by the longitude 
correction 

0!‘072 sin (2F - 21) 

Positions for LE4 were obtained by evaluating the ILE 
with aberration terms removed to make the ephemeris 
strictly geometric, addition of the transformation correc- 
tions of Eckert et al. (Ref. 37) and the longitude correction 
of Eckert and Smith (Ref. 38), and addition of corrections 
to effectively change the constants of the theory to those 
adopted by the International Astronomical Union (IAU) 
in 1964 (Ref. 26, pp. 594.4, except for the value of the 
second zonal harmonic J ,  for the earth. Numerical Her-  
entiation sf these positions gave the velocities for LE4. 
Addition to LE4 of correction terms to account for the 
modern value of J,  gave LE6. 

Van Flandem has obtained corrections to certain con- 
stants of the ILE from a reduction of meridian circle 
observations of the moon and a few grazing occultations 
in the period 1956-1966 (Refs. 39 and 40). The latter 
observations are particularly accurate in declination. The 
observations were referred to the moon’s center of mass 
by the use of Watts’ limb corrections ( 
charts indicate that the geometric center moves relative 
to the center of mass with a maximum amplitude of 7.3 
prad (1.5 arc seconds) (Ref. 39). 

Van Flandem’s corrections to the constants of the ILE 
essentially change the equinox from Brown’s equinox 
(close to Newcomb‘s equinox) to the F 
is the basis of modern observations and the planetary 
ephemerides. Correction terms were added to LE6 to 
change certain of the constants in the theory to those 
obtained by Van Flandern ( . 40). A numerically inte- 

grated lunar ephemeris was obtained by fitting to this 
version of the lunar theory. Addition of corrections to 
account for certain observable but currently unmodelable 
terms of the lunar motion gave LE16. 

In Refs. 21 and 22, it is shown that the significant part 
of the relativistic perturbative acceleration for the helio- 
centric ephemeris of a planet or the earth-moon bary- 
center is the direct perturbative acceleration due to the 
sun, the indirect perturbative acceleration of the sun due 
to the other bodies of the solar system being negligible. 

In the general theory of relativity, the perturbative ac- 
celeration of a body i due to the sun i s  given by Eq, (35) 
with the Newtonian term and the i summation removed 
and the index i referring to the sun. In Ref. 21, pp. 4951, 
it is shown that all terms containing the sun’s barycentric 
velocity, the sun’s acceleration, or the Newtonian poten- 
tial at the sun are insignificant and hence that the rela- 
tivistic inertial acceleration (relative to the barycenter of 
the solar system) of a body due to the sun, denoted i.’(S), 
may be computed from 

.. r(S) =$[(4+- iP) r+4(r* i ) i ]  

where 

p8 = gravitational constant of sun, km3/s2 

c = speed of light 

r,; = heliocentric position and velocity vectors of 
body, with rectangular components referred to 
the mean earth equator and equinox of 1950.0 

f,;  = magnitudes of r and t, respectively 

4 = Newtonian potential at body (positive sign con- 
vention) 

cke theory, Eqs. (35) and (97) are 
replaced by Eq. (54) and the following equation: 

F(S) = ”.{ [2 (1 + y )  - yP] r + 2 (1 + y )  (re 5)  r }  
C2T3 

(98) 

where y (or O; see Eq. 41) is the free parameter of the 
ram-Dicke theory whose value is to be estimated by 

fitting the theory to observation. 

As y approaches unity, its general relativity value, 
Eq. (98) approaches Eq. (97) of general relativity. 



in Eqs. (97) and (98) were replaced by the potential due 
to the sun, pS/r, these equations would be identical to 
the corresponding 1-body equations, namely Eqs. (20) 
and (55), respectively. 

For the heliocentric ephemeris of a planet, the rela- 
tivistic perturbative acceleration is given by Eq. (98). 

owever, the only signifcant term of + is ps /r  and thus, 
for this application, Eq. (98) reduces to the corresponding 
1-body equation, Eq. (55). For the heliocentric ephemeris 
of the earth-moon barycenter, the perturbative acceler- 
ation is computed from7 

where 

P E  
P=- 

PM 

and 

(99) 

PE, ppar = gravitational constants of the earth and moon, 
respectively, km3/s2 

The perturbative accelerations of the earth and moon 
due to the sun are computed from Eq. (98) with the poten- 
tials at these two bodies given by 

where ri j is the coordinate distance from body i to body j .  
The formulas above are used in the SSDPS to compute 
the relativistic perturbative acceleration for each plan- 
etary ephemeris. 

From Ref. 22, Table 3, the maximum amplitude of the 
periodic variations in position for a planetary ephemeris, 
arising from Eq. (98), is about 6 km. It is shown in Ref. 21, 
p. 51, that the ratio of terms of Eq. (54) not included in 
Eq. (98) to the acceleration computed from Eq. (98) has 
a maximum value of Thus the above-mentioned posi- 
tion variations are computed to an accuracy of at least 

The notation 3 ( i )  is the relativistic perturbative acceleration of 
body i due to body i. 

6 m. The relativistic acceleration of the earth-moon bary- 
center computed from Eq. (99) should also contain the 
terms 

where the mutual accelerations of the earth and moon 
are computed from Eq. (54). owever, it is shown in 
Ref. 21, p. 53, that the periodic variations in the position 
of the earth-moon barycenter due to these terms are more 
than three orders of magnitude smaller than the rela- 
tivistic variations due to the sun, which, from Table 3 
of Ref. 22, have a magnitude of about 400 m. Thus, the 
variations in position of the earth-moon barycenter due 
to the mutual accelerations of the earth and moon have 
an amplitude of less than 1 m. The errors in the planetary 
ephemerides due to neglecting the contribution to the 
Newtonian potential + in Eq. (98) from the other planets 
are less than 10 m for the inner planets and 100 m for the 
outer planets. 

The relativistic acceleration due to a planet or the moon 
is significant, relative to the solar relativistic acceleration, 
in only a small region surrounding the body (small in 
relation to the scale of the solar system). For simplicity, 
this region is taken to be a sphere, termed the relativity 
sphere, whose center is at the center of mass of the body. 
The relativistic acceleration due to a planet or the moon 
should be computed only within that body's relativity 
sphere. The radius of the relativity sphere for each body 
of the solar system is given in Ref. 21, Table 5. Since no 
planet is within the relativity sphere of another planet, 
the relativistic acceleration of a planet or the earth-moon 
barycenter due to another planet is negligible. It has been 
estimated (Ref. 21, p. 53) that neglecting the indirect 
relativistic acceleration of the sun produces periodic errors 
in position of less than 1 m for the inner planets and less 
than 1 km for the outer planets. 

Considering all of the errors mentioned above, the 
planetary ephemerides produced by the SSDPS contain 
periodic errors of up to 20 m for the inner planets and up 
to 1 km for the outer planets due to neglected terms in the 
specified formulation for the relativistic perturbative ac- 
celeration. 

Fragmentary evidence indicates that LE16 may be as 
accurate as 100 m. The maximum effect of general rela- 
tivity on the geocentric lunar ephemeris is less than 10 m 
in position and m/s in velocity ( ef. 22, p. 4). Thus, it 



is not important which relativity terms were included in 
the numerical integration fitted to the lunar theory, which 
produced LE16. 

owever, in the future when the lunar ephemeris is 
obtained by a numerical integration fitted to observations, 
as is currently done for the planetary ephemerides and 
the spacecraft ephemeris, the relativistic perturbative ac- 
celeration of the moon relative to the earth should be 
computed from 

The first two terms are evaluated with Eqs. (98), (101), 
and (102). The last two terms are evaluated with Eq. (54), 
with the Newtonian term and the i summation removed 
and the index i referring to the body producing the accel- 
eration. All velocities appearing in Eq. (54) are barycentric 
but may be evaluated with heliocentric values. The accel- 
eration of the perturbing body may be evaluated with 
Newtonian theory, Eq. (31). The Newtonian potentials 
at bodies i and i may be evaluated with Eqs. (101) and 
(102). The sum of terms 1 and 2 of Eq. (103) is about 
km/s2, whereas the individual terms are one order of 
magnitude larger. The magnitudes of terms 3 and 4 are 
about 10-13 and 10-15 km/s2, respectively. The total accel- 
eration computed from Eq. (103) is accurate to three or 
four figures. 

btaining Corrected Position, Velocity, ~eeeleration, 
and Jerk From Eaeh Ephemeris 

1. Uncorrected position and velocity. As previously 
mentioned, the n-body ephemeris consists of (1) heliocen- 
tric ephemerides for eight planets and the earth-moon 
barycenter and (2) the geocentric lunar ephemeris. These 
ephemerides are in the so-called type-50 format; they 
contain modified second and fourth central differences 
of position and velocity. Interpolation with the fifth-order 
Everett’s formula gives rectangular components of posi- 
tion and velocity referred to the mean earth equator and 
equinox of 1950.0 (commonly referred to as 1950.0 coordi- 
nates). Positions and velocities from the planetary ephem- 
erides are expressed in astronomical units AU and 
AU/day, respectively, while data from the lunar ephem- 
eris are expressed in “fictitious earth radii” and “fictitious 
earth radii”/day. 

The conversion factors used to convert the length units 
to  lom meters are A, km per AU and RE km per fictitious 
earth radius. The scaling factors A, and RE are related to 
other solve-for parameters by the so-called solar and lunar 

constraints, respectively. These constraints and the rec- 
ommended values of the scaling factors are given in the 
following section. 

2. Solar and lwmr constraints. The solar constraint is 
an exact relation between the estimated value of 

AH = the number of kilometers per astronomical unit 

and the estimated value of 

,ux = gravitational constant of the sun, km3/s2 

The relation is 

k2A; 
” (S6,400)2 

where 

k = the Gaussian gravitational constant 
= 0.01720209895 AU3I2/day (exactly) 

The gravitational constant of the sun k2 expressed in astro- 
nomical units cubed per day squared is a mathematical 
constant which dehes  the length of 1 AU. The solar con- 
straint is simply a conversion of the sun’s gravitational 
constant from AU3/day2 to km3/s2. 

From Ref. 29, p. 35, Table 17, the values of ,u8 and Ag 
currently adopted by JPL are 

ps = 1.32712499 X loll km3/s2 

A B  = 149,597,893 km/AU 

These values satisfy the solar constraint (Eq. 104) to the 
stated accuracy of nine figures. The value of AE is the rec- 
ommended scaling factor for the planetary ephemerides 
of DE69. 

One of the constants of the lunar theory is 

sin rC = the constant of sine parallax for the moon 
= the ratio of a fictitious mean equatorial radius 

of the earth (the length unit of the lunar 
ephemeris) to the perturbed mean distance 
of the moon. The constant sinnC is dimen- 
sionless; however, it is usually expressed in 
seconds of arc by multiplying by the number 
of seconds of arc in one radian. 



The value of sin?rc adopted by the 
and used in the construction of 4 and succeeding lunar 
ephemerides is 3,422.451 arc seconds. The mean distance 
to the moon in terms of fictitious earth radii is given by 

1 - 206,264.80625 
ax = sin rr , (dimensionless) - sin rr (arc seconds) 

where 

a, = perturbed mean distance of moon (the perturba- 
tion is due to the sun), fictitious earth radii 

The value of uar in kilometers is 

where 

R E  = scaling factor for the lunar ephemeris, km/ficti- 
tious earth radius 

The value of REax is obtained from a modified version 
of Kepler’s third law: 

where 

nx = sidereal mean motion of moon (1900) 

F2 = 0.999093141975298 (as computed by E. W. 

= 2.661699489 X rad/s 

Brown in 1897) 
ratio of perturbed mean distance of moon to 
2-body mean distance (sun not present and 
mean motion remains constant) 

gravitational constants of earth and moon, 
respectively, km3/s2. 

Solving for R E  gives 

RE = C ( p E  + 
where 

For sin,, = 3,422.451 arc seconds, the numerical value 
of C is 86.3135017. 

Equation (107) is the so-called lunar constraint. The 
value of uM in Eq. (108) is computed from the value of 
 sin^, used to generate the lunar ephemeris. Either aM 
or sin w ,  may be considered to be a defined constant of 
the lunar theory. Hence, the accuracy of C is that of n,, 
namely about 10 figures. On the other hand, pa + p x  is 
known to only about seven figures. Hence, for all prac- 
tical purposes, the lunar constraint, Eq. (107), is an exad 
relation which must be satisfied by the estimated values 
of PE,  P M ,  and R E .  

The lunar ephemeris LE16 is based upon values of p E  
and par adopted by the IAU in 1964, namely 

,UE = 398,603 km3/s2 

and 

P = pE/p ,  = 81.30 

which gives 

p a r  = 4,902.87 km3/s2 

Substituting these values into Eq. (107) gives 

RE = 6,378.160 km/fictitious earth radius 

which is the value of the mean equatorial radius of the 
earth adopted by the IAU in 1964. 

However, since 1964, more accurate values of pE and 
p ,  have been adopted by JPL (Ref. 29, p. 35, Table 16): 

PE = 398,601.2 km3/s2 

and 

p = 81.3010 

which gives 

p.x = 4,902.78 km3/s2 

The corresponding value of R E  is 

R E  = 6,378.1492 km/fictitious earth radius 

Strictly speaking, the lunar ephemeris should be corrected 
for these more modern values of pE and px  as was done 
in the generation of LE4 where Brown’s constants were 
corrected to those adopted by the IAU in 1964. 
the major part of this correction can be obtained by scal- 
ing the lunar ephemeris with R E  = 6,378.1492 km rather 
than the value of 6,378.160 km. 
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3. Corrected position an velocity. Each of the precom- 
puted ephemerides may be differentially corrected with 
conic formulas. Position and velocity are interpolated 
from the ephemeris at an epoch of osculation specified 
by the user and are converted to orbital elements, spe- 
cifically the Brouwer and Glemence Set 111 (Ref. 42, 
pp. 241-242). The elliptical orbit with these elements 
agrees exactly with the precomputed ephemeris at the 
osculation epoch and approximately at other epochs. The 
orbital elements of the precomputed ephemeris at the 
osculation epoch are solve-for parameters. Partial deriva- 
tives of position and velocity from the ephemeris with 
respect to these orbital elements are approximated by 
those from the osculating elliptical orbit. These partial 
derivatives are used to determine corrections in the oscu- 
lating orbital elements and, given these corrections, to 
apply a linear differential correction to the ephemeris. 

AE = 

The actual parameters whose values are estimated are 
six parameters which represent corrections AE to the oscu- 
lating orbital elements E. The corrections are 

- 

where 

AM, + AW 

AP 

- eAw Aq 1 
a = semimajor axis of osculating elliptical 

orbit 

e = eccentricity 

Mo = value of mean anomaly at osculation 
epoch, to (ET) 

Ap, Aq, Aw = right-handed rotations of the orbit about 
axes, respectively, where 

Let AE, equal the estimated value of AE obtained from 
the &st iteration of the orbit determination process (see 

e second iteration will produce an addi- 
al correction AE, or a total correction 
the contribution to AE obtained from the 

be denoted as A E ~ .  With this notation, the correction 
AE (n) used to correct the ephemeris for the nth iteration 

consists of the accumulated correction obtained from the 
previous n - 1 iterations: 

1 

If the correction process is convergent, AE, will be less 
than AE,+ and the accumulated correction win approach 
a limit. 

Given 1950.0 position r (AU) and velocity i (AU/s) ob- 
tained from a planetary ephemeris (at any time) in units 
of AU and AU/s (the interpolated value in AU/day 
divided by 86,400), corrected position and velocity for 
the nth iteration, expressed in km and km/s, are com- 
puted from 

r, (km) = AEr (AU) + ar AE (n) r + i (111) 

where AE (n)  is given by Eq. (110). For the lunar 
ephemeris, 

r, (km) = REr (fictitious earth radii) 

In these equations, 

ar 
aE - 
-- 

ar ar ar ar ar ,-,-,- [ 6’ my a (AM, 4- Aw) a (Ap) a (Aq) a (eAw) 

r-+ 3 (113) 

where 

I 



where x, y, and x are the rectangular components of r re- 
ferred to the mean earth equator and equinox of 1950.0. 
The formulation for computing aqaE and $-//a 

The mean motion n is computed from 

P% n = -  in the next section. a3/2 

artial derivatives of position and velocity with re- 
spect to orbital elements. In order to compute ar/aE and 
ai./aE for any of the precomputed ephemerides, position 

osculation epoch must be converted to 

and the follo-g computations are made: 

TO ecos E, = 1 - - a 

ro = 1950.0 position interpolated from ephemeris at 
osculation epoch to(ET) in AU or fictitious earth 
radii and converted to km by multiplying by AE 
or RE. 

io = 1950.0 velocity interpolated from ephemeris at 
osculation epoch to(ET) in AU/day or fictitious 
earth radii/day and converted to km/s by multi- 
plying by AH or RE and dividing by 86,400. 

r, *eo 
esinE -- 

O - (Pa)% 

e = [ ( e c o ~ E , ) ~  + (esinE,)2]% 

(e cos E,) 
e cosEo = 

(e sin E,) 
e sin E, = 

For the heliocentric ephemeris of a planet, the parameter 
p is computed from The unit vectors P, Q, and W are computed from 

For the heliocentric ephemeris of the earth-moon bary- 
center, p is given by 

p (earth-moon barycenter) = ps + pE + pM (116) 

= W X P  (128) For the geocentric lunar ephemeris, 

The partial derivatives &/aE and ai/aE are computed 
from the orbital elements a, e, n, By 
computed once, and from the following quantities, which 
are computed at each timet that the partials are evaluated: where 

ps, pE, p x ,  pP = gravitational constants for the sun, the 
earth, the moon, and a planet, kms/s2 

r, i = 1950.0 position and velocity interpolated from the 
ephemeris at time t (ephemeris time) and con- 
verted to units of km and km/s as indicated pre- 
viously for r, and io. Given ro (km), io (km/s), and p, the required orbital ele- 

ments are computed as follows: 

The semimajor axis a is given by 

T 7 



(144 
f. 42, p. 241, the partial ( 1 - -  r e ( l  - e2) a K 2  = e t with respect to each element 

in Eq. (113), are given by 

where the quantities Hl and K,, which are functions of t ,  
are given by (Ref. 42, p. 237) 

- r - a ( 1 + e 2 )  
ae (1 - e2) 1 -  (135) 

ar -- 
a(Ap) - P X r  

ar -- 
a(Aq) - Q x r  

(137) 

-=L(wx~-:) ar (140) 
a(eAw) e 

Differentiating Eqs. (133-140) with respect to ephem- 
eris time gives the partial derivatives of C at ephemeris 
time t with respect to each element of AE:* 

(142) 
a i  

- H2r + K2i a(ae)- 
where 

5. Acceleration and jerk. Acceleration and jerk vectors 
from each ephemeris are computed from corrected posi- 
tion and velociw vectors using 2-body formulas. Given the 
corrected position and velocity vectors, denoted here as 
r and g, compute a corrected value of T from Eq. (129), the 
acceleration vector 2 from Eq. (132), and the jerk vector 
Y from 

... 3p(r-k) p . r =  r - - T  r5 r3 (149) 

where p is given by Eq. (115), (116), or (117). 

C. Position, Velocity, Acceleration, and Jerk of 
Celestial Body Relative to Another 

Section IV-B gave the formulation for computing the 
corrected position, velocity, acceleration, and jerk of a 
planet P or the earth-moon barycenter B relative to the 
sun S or of the moon M relative to the earth E: 

The position, velocity, acceleration, and jerk of the moon 
relative to the earth-moon barycenter and of the bary- 
center relative to the earth are computed from 

and 

*The velocity partials were first derived by P. R. Peabody, formerly 
of the Jet Propulsion Laboratory. 

PE 
P = -  

Par 
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Listed below are sums of the above-mentioned position 
vectors which give the position vectors of the earth, moon, 
sun, and a planet relative to each of the following bodies: 

(1) Earth = reference body * = r; 
e = r ; - - l $  
Ir"p = r; - g  + r"p 

I$= -r; 

= -G-l$ 
e= -c-e+r"p 
< = G - r Z  
$=e+% 
$=I$ 

I$= -I$+$---; 
e= -$+e+% 
I$= -$ 
I$,= -I=$+$, 

(2) Moon = reference body 

(3) Sun = reference body 

(4) Planet = reference body 

where P and P' represent two different planets. All of the 
sums above apply when r is replaced by i, F, or iE: 

The solve-for parameters which affect the relative posi- 
tion and velocity between two celestial bodies are the 
scaling factor A E  for the heliocentric ephemerides; the 
scaling factor RE for the lunar ephemeris; corrections to 
osculating orbital elements hE for any of the ephem- 
erides; and the gravitational constants of the earth and 
moon, p E  and pM. These are known as reference param- 
eters. 

The acceleration of the spacecraft relative to the center 
of integration consists of: 

The Newtonian point mass acceleration relative to 
the center of integration. 

The perturbative acceleration from general rela- 
tivity. 

The direct acceleration of the spacecraft due to the 
oblateness of a near planet or the moon. 

The indirect acceleration of the center of integra- 
tion (if it is the earth or the moon) due to the 
oblateness of the earth and the moon. 

The acceleration due to solar radiation pressure. 

The acceleration due to small forces originating in 
the spacecraft, such as from operation of the atti- 
tude control system and from gas leaks. 

The acceleration due to motor bums. 

Section V-B contains the formulation for computation of 
each of these terms of the spacecraft acceleration. 

The total acceleration is integrated numerically to give 
the spacecraft ephemeris, with ephemeris time (ET) as &e 
independent variable. The acceleration is computed at 
each integration step and is used to produce three sum 
and difference (s. a. d.) arrays (one for each rectangular 
component of position). Each s. a. d. array contains two 
sums and ten differences of an acceleration component. 
The arrays may be interpolated at any ET epoch to give 
the rectangular components of position, velocity, accel- 
eration, and jerk of the spacecraft relative to the current 
center of integration. The rectangular components are 
referred to the mean earth equator and equinox of 1950.0. 
The x axis is directed along the mean equinox of 1950.0, 
the x axis is normal to the mean earth equator of 1950.0, 
directed north, and the y axis completes the right-handed 
sys tem. 

The center of integration is located at the center of mass 
of the sun, the moon, or one of the nine planets. It may 
be specaed as one of these bodies, or it may be allowed 
to change as the spacecraft passes through the sphere of 
influence of a planet (relative to the sun) or of the moon 
(relative to the earth). For this case, the center of integra- 
tion will be that body within whose sphere of influence 
the spacecraft lies. At a change in center of integration, 
the position and velocity of the spacecraft relative to the 
old center of integration are incremented by the position 
and velocity, respectively, of the old center relative to 
the new center (computed from the formulation of Sec- 
tion IV). 

The 1950.0 rectangular components of the spacecraft 
position and velocity vectors at the injection epoch are 
solve-for parameters and may be referenced to any body 
(not necessarily the center of integration). The injection 
epoch must be specified in the AI, UT@, or ST time scales 



and transformed to E me transformation and the 
ET value of the epoch ry from iteration to iteration 
of the orbit determination process if ATlg5* or Afeeaium is 
an estimated parameter. The injection position and veloc- 
ity vectors are transformed to values relative to the initial 
center of integration (using the formulation of Section 
and are used to start the s. a. d. arrays. 

A motor burn of short duration or a spring separation 
may be represented as an instantaneous change in the 
position and velocity vectors of the spacecraft. The esti- 
mated parameters are the bum time t a  and the rectangu- 
lar components of the velocity increment Ai.  At the epoch 
of the motor burn, the velocity is incremented by Ai- and 
the position is incremented by 

1 
2 Ar = ---&a 

The equations for computing each term of the total 
spacecraft acceleration relative to the center of integra- 
tion are given below. 

1. Point-mass gravitational acceleration. The point- 
mass gravitational acceleration of the spacecraft (S/C) 
relative to the center of integration (C) includes all gravi- 
tational accelerations except those arising from the oblate- 
ness of the various bodies. The point-mass acceleration 
is given by 

T = rN/c - Tc (153) 

= inertial gravitational acceleration of space- 
craft and center of integration, respectively, 
computed by treating each body of the solar 
system as a point mass. These inertial accel- 
erations are relative to the barycenter of the 
solar system and have rectangular compo- 
nents referred to the mean earth equator and 
equinox of 1950.0. 

Each of these accelerations is computed from Eq. (54). 
The l/co term is the Newtonian acceleration and the 
remaining l/c2 terms a ativistic perturbative acceler- 
ations derived from th s-Dicke theory (these terms 

. (35), when y + 1). 
sun, the nine plan- 

ets, and the moon. or each of these perturbing bodies, 
the user has the option of 

(I) Computing the Newtonian acceleration and the 

.. .. .. 
where 

rN/C, 
.. 

rt to those of general relativity, 
summation over j # i includes 

relativistic perturbative acceleration. 

(2) Computing the Newtonian acceleration only. 

(3) Ignoring the acceleration due to that body. 

The acceleration Fj of each perturbing body in Eq. (54) 
is computed from the Newtonian expression, Eq. (31). The 
summation over k# j in Eqs. (31) and (54) and over Z #  i 
in Eq. (54) includes all bodies of the solar system which 
are “turned on” (treated as (1) or (2) above and included 
in the i summation of Eq. 54). The velocities in Eq. (54) 
are heliocentric. 

ct acceleration of spacecraft due to oblateness. 
The acceleration of the spacecraft relative to the center 
of integration due to the oblateness of the bodies of the 
solar system consists of the direct acceleration of the 
spacecraft minus the indirect acceleration of the center 
of integration. Currently, the oblateness for only the earth, 
the moon, and Mars is considered. However, the capability 
for accounting for the oblateness of the remaining planets 
and the sun will be added in the near future. The direct 
acceleration of the spacecraft due to the oblateness of a 
body is computed only when the spacecraft is within the 
so-called harmonic sphere for the body. The radii of the 
harmonic spheres may be changed by input; the nominal 
values for the earth, Mars, and the moon are 2.5 X lo8 km, 
1.0 X lo6 km, and 2 X lo5 km, respectively. The formula- 
tion for computing the direct acceleration of the space- 
craft due to the oblateness of a body is given in this 
section. The indirect acceleration of the center of integra- 
tion due to oblateness, computed only when the center of 
integration is the earth or the moon, accounts for the 
oblateness of each of these two bodies. The formulation is 
given in Section V-B-3. 

The direct acceleration of the spacecraft due to the 
oblateness of a body is derived from the generalized po- 
tential function (Ref. 43, pp. 173-174) for that body: 

x (C, cos mh + s,, sin mA) ] (1%) 

where 

,p = gravitational constant of body, km3/s2 

r, +, h = radius, latitude, and longitude (positive 
east of prime meridian) of spacecraft 
relative to body 
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ap = mean equatorial radius of body (an z‘ ‘b 

adopted constant used for U )  

PF (sin +) = associated Legendre function of the first 
kind. The argument sin 4 will be omitted 
here. 

C n m  and Snm = numerical coefficients (tesseral harmonic 
coefficients). The values may be esti- 
mated by the DPODP. 

PRIME 

The associated Legendre function F’E is defined by 

(1%) 
dm 

( d  sin +)m p n  F’: = cos’*”+ 

where PLANE 

P n  = Legendre polynomial of degree n in sin + 
The zonal harmonic coefficient I n  is defhed as 

z’ axes relative to 

I n  = - C n o  (156) where 

= [ -sin #J cos h 

(161) 
cos + 

cos #J cos x cos + sin h Equation (154) may be written as the sum of three terms 

monics In,  and tesseral harmonics C S m  and Snm (m#0): 
corresponding to the potential of a point mass, zonal har- -sin h cos x 

-sin (p sin x 

u =: + U ( J )  + U ( C , S )  

where 

u (C, S )  = 

(159) 

The inertial acceleration of the spacecraft is computed 
in a rectangular coordinate system (x’y’z’) with the x’ axis 
directed outward along the instantaneous radius to the 
spacecraft, the y‘ axis directed east, and the z’ axis directed 
north. Figure 3 shows these axes relative to body-fixed 
axes xbyb%,, where xb is along the intersection of the prime 
meridian and equator of the body, z b  is directed north 
along the axis of rotation of the body, and Yb completes 
the right-handed system. The transformation from body- 
fixed coordinates rb = (xb, &, zb)T to r’ = (x’, y’, z’)* co- 
ordinates is given by 

The position vector of the spacecraft relative to the body 
(denoted as body i) with rectangular components referred 
to the mean earth equator and equinox of 1950.0 is r - rp 
where 

I = position vector of spacecraft relative to center of 
integration with rectangular components referred 
to the mean earth equator and equinox of 1950.0, 
Le., the “1950.0” position vector 

r: = 1950.0 position vector of body i relative to the 
center of integration C 

The transformation from these 1950.0 body-centered coor- 
dinates to body-fixed coordinates r b  is denoted as 

The overall transformation from (r - r:) to r’ is thus 

The inverse transformation is 
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Using rb from Eq. (162), the sines and 
and the angle are computed from 

The transformation T is currently specified in the 
DPODP for the earth, the moon, and Mars. These and 
most of the other coordinate transformations of the 
DPODP were specified by F. M. Sturms. The formulation 
for T for the earth is specified in Section VII. Sturms' 
formulation for T for the moon and for Mars are specified 
in JPL internal  publication^.^^^^ He has speciiied modifi- 
cations to the existing transformations and specified trans- 
formations for the remaining planets and for the sun in 
another internal publication.ll Sturms also plans to pub- 
lish this formulation in a JPL Technical Report. 

Let 2' denote the inertial acceleration of the spacecraft 
due to the oblateness of any body with rectangular com- 
ponents along the instantaneous directions of the x', y', 
and z' axes. This acceleration can be broken down into 
Y' (J) due to the zonal harmonics J ,  and Y(C, S) due to 
the tesseral harmonics C,, and S,,. Given these terms, 
the direct acceleration of the spacecraft due to the oblate- 
ness of any body, with rectangular components referred 
to the mean earth equator and equinox of 1950.0, is 
given by 

The components of P (J) and Y' (C, S) are given by 

%'(I) = (J) + (C, S) ar 

BWamer, M. R., et al., Double Precision Orbit Determination Pro- 
gram, Vol. 111, TRAJ Segment, EPD 426 (JPL Internal Report), 
June 15, 1967. 

lOWitt, J., User's Guide for TRIC, 900-168 (JPL Internal Report), 
Oct. 20, 1968. 

1%turms, F. M., New Coordinute Transformations for DPTRAJ, 
RFP 392-16 (JPL Internal Report), Dec. 16, 1969. 

(171) F'J) =-- I avo) ( J )  + (6, S) 
rcos+ ax 

Carrying out these differentiations gives 

nl n +  1)P, 
;"(I) = 5 Jn($)'[' 0 ] (173) 

n = l  -cos 4 P:, 

n=1  ,=I 

I - (n + 1) P; {Cnmcosmh + S,,sinmX} 
msec+P~{-C,,sinmh+S,,cosmX} 

cos + PZ' { c,,, cos mx + s, sin mX}  

(174) 

where the primes indicate derivatives with respect to 
sin+. Currently, n, has a maximum value of 15 and n2 
has a maximum value of 8. These limits will undoubtedly 
be increased in a future version of the program. 

The Legendre polynomial P, is computed recursively 
from (Ref. 44, p. 308, Eq. 11) 

07-59 
2n - 1 n-1 P, = - n 

starting with 

P, = 1 (176) 

P, = sin+ (177) 

The derivative of P, with respect to sin+, denoted Pk, is 
given by (Ref. 44, p. 308, Eq-I) 

PL = sin + PL-, + n P,-, 
starting with 

P: = 1 

The function sec.+P; is computed by 

(178) 

(179) 

first generating 

sec + 9; = (2n - 1) cos + (sec + P;::) (180) 

starting with 

sec+ Pi = 1 (181) 
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and continuing until n = n,, and then generating 

2n - 1 
sec +e = (-) n - m  sin + (sec + PF-~  ) 

For each value of m between 1 and n,, n is varied from 
m + 1 to %. The general term Pfc is zero if b > a. Equa- 
tion (180) may be obtained by successive differentiation 
of Eq. (175) with respect to sin+ and substitution into 
Eq. (155). Equation (182) was obtained from Ref. 45, 
p. 161, Eq. 12. The function Pz is obtained by multiply- 
ing (sec + PE) by cos +. 

The function cos+ P;', where P;' is the derivative of 
PE with respect to sin +, is computed from (Ref. 45, p. 161, 
Eq. 19) 

cos+ P;' = - n sin + (sec + PE) + ( n  + m) (sec + Pa,) 

(183) 

3. Indirect acceleration of center of integration due to 
oblateness. As previously mentioned, the indirect oblate- 
ness acceleration of the spacecraft relative to the center 
of integration is the negative of the acceleration of the 
center of integration due to oblateness. It is computed 
only when the center of integration is the earth or moon 
and accounts for the oblateness of both of these bodies. 

The force of attraction between the earth and moon 
consists of 

YE (M) = inertial acceleration of point-mass earth due 
to the oblateness of the moon 

These accelerations, with rectangular components referred 
to the mean earth equator and equinox of 1950.0, may be 
computed from the formulation of Subsection V-B-2. In 
the computation of &(E) ,  the moon is treated as the 
spacecraft of Subsection V- -2, and r - r: in Eq. (162) is 
replaced by e. Similarly, in the computation of YE (M), the 
earth is treated as the spacecraft and r - r% is replaced by 
rf . 

Consider the force of attraction between the earth and 
moon due to the oblateness of the earth, assuming the 
moon to be a point mass. This force produces B ( E )  and 
also 

?'E ( E )  = inertial acceleration of the earth due to the 
force of attraction between the oblate part of 
the earth and the point-mass moon 

Since these two accelerations are derived from equal and 
opposite forces, 

Similarly, consider the force of attraction between the 
earth and moon due to the oblateness of the moon, con- 
sidering the earth to be a point mass. This force produces 
&(M) and ?SO 

Yaf (M) = inertial acceleration of the moon due to the 
force of attraction between the oblate part of 
the moon and the point-mass earth 

Since these two accelerations are derived from equal and 
opposite forces, The force of attraction between the point-mass 

earth and point-mass moon. 

The force of attraction between the oblate part of 
the earth and the point-mass moon. 

The force of attraction between the oblate part of 
the moon and the point-mass earth. 

The force of attraction between the oblate part of 

Y J f ( M )  = - EYE((M) (185) 
PJf 

e acceleration of the earth due to the oblateness of 
the earth and moon is 

the earth and the oblate part of the moon. ?E = "rE (M) f ?E ( E )  

="; M) - ""&(E) 
PE 

The force (1) is accounted for in Subsection V-B-1. The . (  
formulation of this section will account for the forces (2) 
and (3), but will ignore the force (4). Similarly, 

Let 

% ( E )  = inertial acceleration of point-mass moon due 
to the oblateness of the earth 
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) is proportional to pB and Yx (E) is pro- 
portional to p E .  The contribution to the spacecraft accel- 
eration relative to the center of integration is the negative 
of the acceleration of the center of integration, or 

where 

If earth = center of integration, --+pi = i - p x  

f moon = center of integration, &pi = -pB 

Sturms’ algorithm for computation of this acceleration 
accounts for J,, C,,, and S,, of the earth and moon. 
Equation (188), evaluated with these harmonic coeffi- 
cients, is equivalent to Sturms’ formulation. An earlier 
version of his formulation, which is based upon the prin- 
cipal moments of inertia A, B, and C for the earth and 
moon, is given in Ref. 4.6. 

4. Acceleration of spacecraft due to solar radiation 
pressure and small forces originating in spacecraft. This 
section gives the model for representing the acceleration 
of the spacecraft due to solar radiation pressure and to 
small forces originating in the spacecraft, such as those 
from operation of the attitude control system (particularly 
if it uses uncoupled attitude control jets) and from gas 

leaks. The model applies to any spacecraft which has one 
axis (the roll axis) continuously oriented toward the sun 
and utilizes a star or planet tracker to orient the spacecraft 
about the roll axis. The various Mariner spacecraft are of 
this type. 

The solar radiation pressure model accounts for the 
acceleration of the spacecraft due to solar radiation pres- 
sure acting along three mutually perpendicular space- 
craft axes, one of which is the roll axis. Normally, the 
solar panels are oriented normal to the roll axis so that the 
largest component of the force due to solar radiation pres- 
sure is along the roll axis. However, the model can also 
account for the small forces acting along the other two 
spacecraft axes and arising from departures of the space- 
craft shape from rotational symmetry about the roll axis. 

The small force model accounts in a crude fashion for 
the acceleration arising from small forces originating in 
the spacecraft. The component of this acceleration along 
each spacecraft axis is represented as a quadratic. This 
model is currently being expanded to allow this accelera- 
tion to be represented alternatively as an exponential 
decay with components along each spacecraft axis. 

The acceleration of the spacecraft due to solar radiation 
pressure and small forces originating in the spacecraft is 
represented by 

e terms in this equation are defined as 

8 p  = unit vector from sun to spacecraft 

ong spacecraft x and y 
= Usp) (defined below) 

where i = r, X,  or y = solve-for coeffi- 
cients of acceleration polynomials, 
km/s2,km/s3, km/s4 

ai7 bi, ci 

t = ephemeris time 

c2 = epochs at which the acceleration 
polynomials are turned on and off, 
respectively. The epochs may be 
specified in the UTC, ST, or A1 time 
scales. They must be transformed to 
ET for use in Eq. (189). The transfor- 
mation will be different for each itera- 
tion of the orbit determination process 
if the values of  AT^^^^ or Afcesium are 
estimated. 
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A a ,  Aa,, Aa, = input acceleration (not solve-for), 
km/s2. The value for each ?Aai is 
obtained by linear interpolation 
between input points specified in any 
time scale. The acceleration is started 
at the epoch of the first point and 
ended at the epoch of the last point. 

G, = 

G, = 

Gi, Gk, G: = 
km3kg - 1.010 x 10s - c, = -x - - JAJ lkmz 

c 106m2 s2m2 

where 

J = solar radiation constant 

= 1.352 5 X lo3 W/m2 (Ref. 47)12 

= 1.352 5 X lo3 kg/s3 

A, = 1.496 X 10' km 

c = 2.997 925 X lo5 km/s 

4 = nominal area of spacecraft projected 
onto plane normal to sun-spacecraft 
line, m2 

rn = instantaneous mass of spacecraft, kg 

rSp = distance from sun to spacecraft, km 

TSRp = epoch at which acceleration due to 
solar radiation pressure is turned on 
(epoch of solar panel unfolding). The 
epoch may be specified in the UTC, 
ST, or A1 time scales and must be 
transformed to ET for use in Eq. (189). 

u* (t - TSEP) = 1 for t 1- TsRp if spacecraft in sunlight, 
0 for t < TSRp or if spacecraft in 
shadow of a planet or the moon 

Gr = solve-for effective area for acceleration 
of spacecraft in radial direction due to 
solar radiation pressure, divided by 
nominal area A, 

~~ 

12On July 20, 1970, the author of Ref. 47 stated that a more accu- 
rate reduction of the data gave a value of 1.348 X 103 W/mZ. 

EPS = 

AG,, AG,, AG, = 

solve-for effective area for acceleration 
of spacecraft in the direction of its 
positive x axis (along 
divided by A, 

solve-for effective area for acceleration 
of spacecraft in the direction of its 
positive y axis (along 
divided by A, 

solve-for derivatives of G,, G,, G, with 
respect to earth-spacecraft-sun angle, 
E P S  

earth-spacecraft-sun angle, rad 

increments to G,, G,, and G, obtained 
by linear interpolation of input points 
specified in any time scale. The value 
of AGi is computed at each integration 
step contained between the epoch of 
the first point and the epoch of the last 
point. 

The term G!,(EPS) along each spacecraft axis was 
included so that the model would be compatible with the 
Mariner I1 spacecraft, which contained a high-gain an- 
tenna that moved continuously with respect to the space- 
craft axes and always pointed toward the earth. These 
terms account for the variation in G,., G,, and G, due to 
this moving antenna. 

The Mariner IV spacecraft contained movable attitude 
control vanes situated at the end of each solar panel. 
Movement of these vanes caused G,, G,, and G, to fluc- 
tuate with time. The AGi terms account for these fluc- 
tuations. 

The unit sun-spacecraft vector US, is computed from 

r - rg 
U S P  = I! r - rs" II 

where 

r = position vector of spacecraft relative to center of 
integration with rectangular components referred 
to the mean earth equator and equinox of 1950.0 

I$ = 1950.0 position vector of sun relative to center of 
integration C 
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the angle K :  

cosK sinK 
[::]=[-sinK cosK][E] (lgl) 

The angle K is an input (non-solve-for) constant. Com- 
putation of the unit vectors T and N requires the unit 
vector WR 

WR = unit vector from spacecraft to reference body 
which orients the spacecraft about the roll axis 
(sun-spacecraft line). The reference body may be 
a star, a planet, or the moon. 

If the reference body is a star, 

where the right ascension (Y and declination 6 of the star 
are referred to the mean earth equator and equinox of 
1950.0. If the reference body B is a planet or the moon 
(normally the earth), 

(193) 

where 

I-: = 1950.0 position vector of reference body B rela- 
tive to center of integration C 

The unit normal vector 
reference body plane) is computed from 

(normal to sun-spacecraft- 

(194) 

The unit tangential vector 
reference body plane) is 

(tangent to sun-spacecraft- 

, the vectors X* and 
Eqs. (191). The angle 
spec& orientation of 
craft. 

may be selected to achieve a 
and Y* relative to the space- 

The EPS angle may be computed from 

where 

Wk is computed from Eq. (193) using B = earth. 

5. Acceleration due to motor burn. The acceleration of 
the spacecraft due to a motor bum is represented by 

i: = UW [U (t - To) - u (t - TI)] km/s2 (197) 

where 

a = magnitude of 'r' 

W = unit vector in direction of i: 
To = effective start time of motor, the ET value 

of the solve-for epoch, which may be 
specified in the UTC, ST, or A1 time 
scales 

T f  = effective stop time of motor, ET 

t = ephemeris time 

1 f o r t h  To 
u (t - To) = Ofort < To To+ T f  

The effective stop time TI  is given by 

where 

T = solve-for burn time of motor, 

The acceleration magnitude a is given by 

(199) 
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where 

F (t) = magnitude of thrust at time t. The 
polynomial coefficients of F ( t )  are 
solve-for parameters 

t = t - To, seconds 

rn ( t )  = spacecraft mass at time t 

m, = spacecraft mass at To 

Go, M I ,  i02, n%, = polynomial coefficients of propellant 
mass flow rate (positivg) at time t :  

(not solve-for parameters) 

For F in lb and m in lbm, 
C = 0.00980665 

G (t) = iOo + &,f+ M22 + ni3F 

C = 0.001 for F in newtons and m in kg. 

The unit vector W in the direction of thrust is given by 

a, 8 = right ascension and declination, respectively, of 
U, referred to the mean earth equator and equi- 
nox of 1950.0 

given by 

where the polynomial coefficients of Eqs. (201) and (202) 
are solve-for parameters. 

This section gives the formulation and procedure for 
solution of the light time problem, which is the first step 
in the computation of all observable quantities. 

An electromagnetic signal is transmitted from a tracking 
station on earth at time tl .  This signal is received by the 
spacecraft (either a free spacecraft or a landed spacecraft 
on the moon or on one of the planets) and retransmitted 
at time t,, arriving at the same or a different tracking sta- 
tion on earth at time t3. Alternatively, the signal may be 

transmitted directly by the spacecraft at time t,. All ob- 
servables are related to characteristics of this electromag- 
netic radiation, i.e., the angle of the incoming ray, the ratio 
of received to transmitted frequency, or the round-trip 
transit time. The transmitting station, the spacecraft, and 
the receiving station are referred to as direct participants, 
and tl, t,, and t3, respectively, are their epochs of partici- 
pation. The solution of the light time problem consists 
of these epochs of participation and the heliocentric posi- 
tion, velocity, acceleration, and jerk of each direct par- 
ticipant evaluated at its epoch of participation. The 
rectangular components of these vectors are referred to 
the mean earth equator and equinox of 1950.0. Sections 
VIII-XI give the formulations for computing doppler, 
range, and angular observables, starting with the solu- 
tion to the light time problem. 

The solution to the light time problem is obtained by 
solving the light time equation for each leg of the path 
of electromagnetic radiation from the transmitting to 
the receiving station. The light time equation relates the 
light time between two points to the heliocentric posi- 
tions of each of the two participants evaluated at their 
epochs of participation. Starting with the known recep- 
tion time t3, the light time equation is solved by an 
iterative technique for the down leg of the light path 
to give the epoch of participation for the spacecraft, t,. 
Given t,, the light time equation is solved iteratively for 
the up leg of the light path to give the transmission 
time tl. 

Section VI-B gives the formulation for solution of the 
light time problem; the detailed procedure is given in 
Section VI-C. 

Let the subscripts i or i equal 1, 2, or 3 where 

1 refers to the transmitting station on earth at the trans- 

2 refers to the spacecraft (free or landed) at the reflec- 

3 refers to the receiving station on earth at the recep- 

The time for light to travel from point i at ephemeris time 
(coordinate time) ti to point i at ephemeris time t j  is 
given by Eq. (88), repeated here: 

mission time tl 

tion time t, 

tion time t3 
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where 

rii = 11 rij 11 = 1 1  $(ti) - c(ti)ll 
= I I  e (ti)II 

Ti = I 1  r: (ti)II 
(ti), $ (ti) = heliocentric position vector of point i at 

transmission time ti and point i at recep- 
tion time ti, with rectangular compo- 
nents referred to the mean earth equator 
and equinox of 1950.0 

c = speed of light, km/s 

pLS = graviiational constant of sun, km3/s2 

y = solve-for free parameter of Brans-Dicke 
theory of relativity. The parameter y is 
related to w, the coupling constant of 
the scalar field, through Eq. (41). 

Equation (203), which is referred to as the light time 
equation, relates the light time in ephemeris time for a 
given leg of the light path to the heliocentric position 
vectors of the two participants evaluated at their epochs 
of participation. The light time equation applies to the 
down leg of the light path when i = 2 and i = 3; when 
i = 1 and i = 2, it applies to the up leg. 

Let 

r$ = rii = position vector of point i relative to point i, 
with rectangular components referred to the 
mean earth equator and equinox of 1950.0. 

With this notation, the heliocentric position vectors of 
the transmitter, spacecraft, and receiver at their epochs 
of participation are computed from the following equa- 
tions. For the transmitter, 

where S = sun and E = earth. Similarly, for the receiver, 

For a free spacecraft S/C, with center of integration C, 

For a landed spacecraft on body B, 

Each of these 1950.0 vector sums applies with r replaced 
by 2, Y, and *E The heliocentric position, velocity, accel- 
eration, and jerk of the earth, as well as the center of 
integration or the body upon which the spacecraft has 
landed are obtained as indicated in Section IV. The 
position, velocity, acceleration and jerk of the spacecraft 
relative to the center of integration are obtained by inter- 
polation of the spacecraft ephemeris s u m  and difference 
arrays. The formulation for computing the 1950.0 position, 
velocity, acceleration, and jerk of a tracking station rela- 
tive to the earth or of a landed spacecraft relative to the 
body B on which it is located is given in Section VII. The 
geocentric 1950.0 position and higher derivatives for a 
tracking station are primarily functions of the UT1 value 
of the epoch, although the ET value is also required. 

Solution of the light time equation (Eq. 203) for a given 
leg of the light path gives the transmission time ti for 
that leg. The time ti is used to compute rf(ti) in the 
evaluation of the right-hand side of the light time equa- 
tion and also appears explicitly in the left-hand side. The 
light time equation must be solved for ti by an iterative 
technique. The DPODP uses the Newton-Raphson 
method. Let the function f whose value is to be minimized 
be the left-hand side of the light time equation minus 
the right-hand side: 

When the relativity term is ignored, the partial derivative 
of f with respect to ti is 

Let A(ti) equal the linear differential correction to the 
estimate of ti. Then 

Substituting Eqs. (208) and (209) into Eq. (210) gives 

1 -  

P 



The procedure for using this iterative formula for obtain- 
ing the transmission time t, for the down leg and the 
transmission time tl for the up leg is given in the folbw- 
ing section. 

cedure 

The procedure is as follows: 

Convert the observation time t3(ST) to t3(UTC), 
t3 (Al), t3 (UTl), and t3 (ET) using the time trans- 
formations of Section 111. Compute e (t3) from 
Eq. (205). Compute also tt (t3),q (t3),.ji:(t3). 

Obtain the first estimate for t, (ET) as: 

(a) For the first observation of the spacecraft on a 
pass of the spacecraft relative to the receiving 
station, tz = t3. 

(b) For the remaining observations of the pass, 
t, = t3 minus the converged light time for the 
down leg of the previous observation. 

Given the estimate for tz (ET), compute ri (tz), 2: (t2), 
ri(t,), and'Yt(t,) from Eq. (206) or (207) and A(t,) 
from Eq. (211). The next estimate fort, is tz + A (t2). 
Repeat step 3 until A (t,) < s. (On the IBM 7094 
computer, time is represented as double-precision' 
seconds past January 1, 1950, Oh to a precision of 
0.6 X lo-? s from 1967 to 1984.) 

.. 

Obtain the first estimate for tl (ET) as t, minus the 
converged light time for the down leg of the cur- 
rent observable. 

Convert the estimate for tl (ET) to tl (Al), tl (UTC), 
tl (UTl), and tl (ST). Compute e (tl), e (tl), (tl), 
and":: (tl) from Eq. (204) and A (tl) from Eq. (211). 
The next estimate for tl is tl -I- A (tl). Repeat step 5 
until A (tl) < lo-' s. 

ost of the intermediate quantities used in the compu- 
tation of the heliocentric position, velocity, acceleration, 
and jerk of each participant at its epoch of participation 
are saved and used in the computation of the observable 
and the partial derivatives of the observable with respect 
to the estimated parameters. 

This section gives the formulation for computation of 
the position, velocity, acceleration, and jerk of a tracking 
station relative to the center of the earth or of a landed 
spacecraft relative to the center of the body on which it is 
located, with rectangular components referred to the 
mean earth equator and equinox of 1950.0. In addition 
to a fixed tracking station, a model is included for repre- 
senting the motion of a tracking ship. 

The first step in the computation of 1950.0 position, 
velocity, acceleration, and jerk is to obtain the 'body- 
fixed" position rb (and also velocity, acceleration, and jerk 
in the case of a tracking ship), where xg is along the inter- 
section of the prime meridian (passing through the instan- 
taneous axis of rotation) and the instantaneous equator, 
where zb is along the instantaneous axis of rotation, 
directed north, and where Y b  completes the right-handed 
rectangular coordinate system. 

Given r b  (and higher derivatives for a tracking ship), 
the 1950.0 position, velocity, acceleration, and jerk are 
obtained from the transformation matrix T (which relates 
these two coordinate systems) and from T, !t?, and "i.: As 
mentioned in Section V, these transformations are cur- 
rently specified for the earth, the moon, and Mars. The 
transformations for the remaining planets and for the sun 
have been specified by F. M. Sturms and will be added to 
the program in the near future. 

The location of a fixed tracking station on earth is 
specified by its spherical or cylindrical coordinates rela- 
tive to the mean pole, equator, and prime meridian of 
1903.0. These station coordinates are solve-for parameters. 
Because the pole (axis of rotation) wanders relative to 
the earth, the "body-fixed" coordinate system moves rela- 
tive to the earth and the "body-fixed" position q, of a fixed 
tracking station on earth is a variable quantity. 
puted from the time-varying coordinates of the true pole 
of date relative to the mean pole of 1903.0 supplied by the 
B.I.H.13 The location of a landed spacecraft on a planet 
or the moon is specified by constant spherical or cylin- 
drical coordinates (solve-for parameters) relative to the 
body-fixed coordinate system. The body-fixed position of 
a tracking ship is specified by its spherical coordinates 

13Bureau International de l'Heure. 



at an arbitrary epoch, and by its azimuth and velocity; 
the values of these five parameters may be estimated. The 
value of the geocentric radius to the ship is constant. 

Section VII-B gives the formulation for computing 
body-fixed position (and higher derivatives for a tracking 
ship). Section VII-C gives the general formulation for 
transforming these quantities to 1950.0 position, velocity, 
acc$eFFtion, apd jerk using the transformation matrices 
T, T ,  T, and T. These matrices are specified for the earth 
in Section VII-D. 

1. Fixed tracking station or landed spacecraft. For a 
tracking station on earth or a landed spacecraft on the 
moon or a planet, the spherical coordinates referred to 
the x7,ybzb “body-fixed” coordinate system are 

T = radius from center of body, km 

4 = body-centered latitude measured from true equator 
(plane normal to instantaneous axis of rotation and 
containing center of mass) 

h = longitude measured east from prime meridian 
(passing through instantaneous axis of rotation) 

The cylindrical coordinates are 

u = distance from spin axis (instantaneous axis of rota- 
tion), km 

= T C O S 4  

o = height above true equator, km 

= rsin4 

X = longitude measured east from prime meridian 
(passing through instantaneous axis of rotation) 

For spherical coordinates, the body-ked rectangular 
coordinates are 

For cylindrical coordinates, 

For a landed spacecraft on a planet or the moon, the 
spherical or cylindrical coordinates are constant and are 
solve-for parameters. For a tracking station on earth, the 
solve-for parameters are the spherical or cylindrical 
coordinates relative to the mean pole, equator, and prime 
meridian of 1903.0. The spherical coordinates are denoted 
by r, 40, and ho; the cylindrical coordinates are denoted by 
uo, vo, and io. The transformations from these 1903.0 coor- 
dinates to those referred to the “body-fixed” coordinate 
system are 

4 = $0 4- A+ (5314) 

The formulas for computing the corrections A+, Ah, Au, 
and Au are derived below. Given the body-fixed spherical 
or cylindrical coordinates, the rectangular components of 
rb are computed from Eq. (212) or (213). 

Figure 4 shows the latitude +o and longitude ,io of a 
tracking station S relative to the mean pole of 1903.0 (Po) ,  
and the instantaneous latitude 4 and longitude h relative 
to the true pole of date (P). The pole Po and associated 
grid of equator and meridians is rotated through the 
angle o carrying Po to P. The angular coordinates of P 

90’E MERIDIAN PO 
I -v . 

GREENWICH MERIDIAN 

TRUE EQUATOR 

U @  



relative to Po are x measured south along the Greenwich 
meridian of 1903.0 (strictly the 1903.0 meridian of zero 
longitude) and y measured south along the WOW merid- 
ian of 1903.0. Values of x and y are obtained from the 

. They are represented by h e a r  polynomials: 

The coefficients I ,  m, p, and q are specified by time block, 
usually of one month’s duration, and t is in seconds past 
the start of the time block. Since the angles x and y cor- 
respond to a displacement along the earth’s surface of 
only a few meters (to date the maximum value has been 
about 10 m), an approximate expression for A+ = + - +o 

is 

A+ =xcosXo - ysinA, (220) 

Noting a. and a on Fig. 4, one obtains 

Thus, 

ho = a0 + tan-1 (+) 

= a + tan-1 (+) 

From the spherical triangle P Po S, 

(224) 
sinao sina 
cos+ cos+o 
-- - 

Cross multiplying and using Eqs. (223) and (214) gives 

sin a0 cos +o = sin (ao 4- Ah) cos (+o 4- A+) (225) 

Expanding, noting that Ah and A+ are very small angles, 
and ignoring the higher-order term containing AA A+ gives 

AA = tan a. tan +o A+ (226) 

From Eq. (221), 

Y tan& + - 
1 - -tanko 

(227) 
X 

tanao = 
Y 
X 

Substituting Eqs. (220) and (227) into Eq. (226) gives 

AX = tan +o (x sin A. 4- y cos A,) (228) 

The cylindrical coordinates relative to the pole of 1903.0 
and the -we pole of date are 

- 

UO = TCOS $0 u = TCOS + = TCOS (+o + A+) 

vo = Tsin4, v = r s h +  = T S ~ ( + ~  4- A+) 

Solving for Au = u - uo and Av = v - o0 gives 

AU = -uo.A+ 

AV = Uo A+ 

where A 4  is given by Eq. (220). Using cylindrical coordi- 
nates, ~h is computed from 

(233) 
VO 

AA = - uo (x sin A. + y cos A,) 

The “body-fixed” position n, of a fixed tracking station 
on earth varies with the motion of the pole, and hence 
the body-fixed velocity i b  is non-zero. However, its maxi- 
mum magnitude is about 2 X m/s, which is less than 
the desired accuracy of m/s for computed doppler 
observables. Hence i b  is taken to be zero. 

For a description of the wandering of the earth’s axis 
of rotation, see Ref. 48. 

e The ship is assumed to move 
on a sphere of radius T at constant azimuth A measured 
east of north, and at constant speed v.  The ship passes 
through the point with latitude ,+o and longitude ho at time 
to (UTC). All quantities are referenced to the x b  Yb X b  body- 
fixed coordinate system defined in Section VII-A. The 
parameters T,  (p0, Lo, u, and A are solve-for parameters. 



The velocity along the meridian is given by 

~4 =VCOSA (234) 

Thus the latitude may be expressed as 

v cos A + = .+o + - 
T 

The velocity normal to the meridian is given by 

Equation (236) can be integrated by replacing dt in 
the integral of a dt by rd+/v cos A from Eq. (234). The 
result is 

tan (2 + +) 
X = A,, + tanAln 

A # 90 deg, 270 deg (237) 

Similarly, differentiation of this equation gives 

This expression is indeterminate for A = 90 or 270 deg. For 
these cases, compute 

[t (UTG) - to (UTG)] X = h  +- 2, 

O -  T c o S + O  

+ forA = 90deg 

- forA = 270 deg (238) 

Given from Eq. (235) and from Eq. (237) or (238), 
rb is given by Eq. (212), repeated here: 

(239) 

Differentiation with respect to time using Eqs. (234) 
and (236) gives 

-cosAsin+cosh - sinAsinX 
-cosAsin+sinX + sinAcosX 

cos A cos + 

- (COS~ACOS+ + - ") cos X + (sin A cos A tan +) sin X cos .+ 
sin X - (sin A cos A tan 4) cos X 

sinz A 
- (cos2Acos+ + ~ cos + 

-COS A sin + 

Equation (241) would be simpler if the tracking ship 
were moving along a great circle (at varying azimuth A). 
The transformation from body-fixed position, velocity, 
and acceleration to 1950.0 position, velocity, acceleration, 
and jerk is given in the next section. The body-fixed jerk 
@,) is ignored since its maximum contribution of about 

m/s to computed doppler is considerably smaller 
than the accuracy of tracking-ship data. 

Let the 1950.0 position, velocity, acceleration, and jerk 
of a fixed tracking station, a moving tracking ship, or a 
landed spacecraft relative to the center of the body i on 

V2 - 
T 

which it is located be denoted by r50, i50, ?50, and .C0. 
The transformation from the body-fixed position vector 
R, to the 1950.0 position vector r50 is given by 

where Ti is the 3 X 3 transformation matrix for the body 
i in question. 

or a fixed tracking station on earth or a landed space- 
craft on a planet or the moon, & is negligibly small and 
is taken to be zero. Thus, 



For a moving tracking ship, i b  and %, are nonzero and 
'5 is ignored. Thus, 

where T.& has been ignored in Eq. (249). 

The formu!atign for computing the transformation 
matrices Ti, Ti, Ti, and 'i;i for the earth (i = E) is given 
in the next section. 

. Body-Fixed to Space-Fixed ~ r a n s f o r ~ a t i o n  
for the Earth 

For the earth, the transformation T is given by the 
product of three 3 X 3 matrices: 

Substituting Eq. (250) into Eq. (242) gives 

or 

r b  = Tg rso = BNA r,,, (252) 

The matrices A, N ,  and B are defined as 

A = precession matrix, transforming from coordinates 
referred to the mean earth equator and equinox 
of 1950.0 to coordinates referred to the mean 
earth equator and equinox of date 

N = nutation matrix, transforming from coordinates 
referred to the mean earth equator and equinox 
of date to coordinates referred to the true earth 
equator and equinox of date 

B = rotation from coordinates referred to the true 
earth equator and equinox of date to body-fixed 
coordinates Fb = (xb, Yb, zb)T, where is along 
the intersection of the prime meridian (passing 
through the instantaneous axis of rotation) and 

the instantaneous equator, Zb is along the instan- 
taneous ax is  of rotation, directed north, and Y b  

completes the right-handed rectangular coordi- 
nate system. 

The matrix B is given by 

where 

e = apparent (true) sidereal time = Greenwich hour 
angle of true equinox of date 

The derivative of TE with respect to ephemeris time Tn 
is given by 

fE = (6NA + BfiA + BNA)T (254) 

The formulation for computation of the precession ma- 
trix A, the nutation matrix N ,  and their derivatives with 
respect to ephemeris time, A and i?, is given in a JPL 
internal p~blicati0n.l~ Differentiation of B with respect 
to ephemeris time gives 

-sin0 cos 8 i ]  
(255) 

0 0  

where 4 is the derivative of 6 with respect to ephemeris 
time. 

The contribution to the "space-fixed" velocity of the 
tracking station relative to the center of the earth, is0, 
from the precession and nutation rates is a maximum of 
about lo-* m/s. Since doppler observables are computed 
to an accuracy of m/s, these terms are included in 
Eq. (254). The computation of doppler observables also 
requires the acceleration and jerk of each participant; 
however, only approximate values are needyd. Thys, YE 
and TE are obtained by differentiation of TE z (BNA)= 
holding N and A constant: 

14Warner, M. R., et al., Double Precision Orbit Determination PTO- 
gram, Vol. 111, TRAJ Segment, EPD 426 (JPL Internal Report), 
June 15, 1967. 



The second and third derivatives of B with respect to 
ephemeris time are obtained by successivf: differentiation 

owever, the sidereal rate 6 in Eq. (255) is 
an extremely constant quantity and is held fixed during 
this differentiation. The resulting expressions are: 

--cos6 --sine o 
B = [  sine -cos6 0 ]i2 (258) 

0 0 0  

sine -cos6 0 

0 0 0  
.I(. B = [  cos6 sin6 0 ] i3 (259) 

The neglected terms of YE and YE contribute less than 
m/s to the computed doppler observables. 

The true sidereal time 6 and true sidereal rate are 
computed from the following formulation (where dots 
indicate differentiation with respect to ephemeris time). 
Let 

Bar = mean sidereal time = Greenwich hour angle of 
mean equinox of date 

nox relative to true equinox 
S$ = nutation in longitude = longitude of mean equi- 

SE = nutation in obliquity 

E = true obliquity of ecliptic 

T= mean obliquity of ecliptic 

rom Ref. 25, p. 98, 

(264) 
A + B T +  CT2 + DT3 

206,26480625 (rad) 
- 
E = =  

where 

A = 23O27'8126 = 84,428'.%6 

B =  -461845 

G = -0'!0059 

= 010018B 

ulian centuries of 36,525 ephemeris days elapsed 
since January 0,1900, l Z h  ET 

The quantity T is computed from 

JED - 241 5020 ET 
86,400 X 36,525 = 0.5 + 36,525 T =  

(265) 
where 

JED = Julian ephemeris date 

ET = seconds of ephemeris time from January 1, 
1950, Oh ET 

Differentiation of Eq. (264) with respect to ET gives 

6 B + 2CT + 3DT2 
E = 86,400 X 36,525 X 206,264.80625 (rad/s) 

(266) 

The nutations S $  and SE and their derivatives $$ and $E 

are contained on the n-body ephemeris tapes (described 
in Section IV). The nutations S $  and SE are based upon 
the theory of E. W. Woolard (Ref. 49). The derivatives 
8 3  and S'E are obtained by numerical differentiation. 

Mean sidereal time 1 9 ~  is a function of universal time. 
The expression for 6, is obtained by substituting Rv (UT) 
from Eq. (91) into Eq. (92). Since 6, is the hour angle of 
the mean equinox of date measured from the Oo meridian 
passing through the instantaneous axis of rotation, it 
should be computed specifically from UT1 (see Sec- 
tion 111). Thus, from Eqs. (91) and (92), 

6r = UT1 + J + KTU f LT; (angular seconds, ") 

(267) 
whereI6 

UT1 = seconds of UT1 time past January 1, 1950, oh 
UT1 

J = 6h38m45%36 = 23,9258836 

K = 8,640,1848542 
L = 0:0929 

Tu = number of Julian centuries of 36,525 days of 
UT1 elapsed since January 0, 1900, 12h UT1 

15Note that 1 second of UT1 time is the time for the angle UT1 
(see Section 111) to change by 1 angular second (86,400 angu- 
lar seconds = 271 radians ). 



e quantity Tu is computed from where 

(UT1) = Julian date computed from UT1 UT1 
= 0.5 + 

36,525 86,400 367525 Substituting q. (267) into Eq. (260), and removing multi- 
T U  = 

(268) ples of 2~ io tha; 0 < 6 < a, &es 

+ *> 12, (rad) 
UT1 + J + KTO + LT8 

86,400 2T decimal part 
6 = [  

The quantities UT1/86,400 and KTu/86,400 currently have magnitudes of about 7,OOO revolutions (1 revolution of 6 = % 
radians of 8) and 70 revolutions, respectively. Thus, when taking the decimal part of 6 expressed as revolutions, four 
decimal digits are lost. Since double precision on the IBM 7094 is about 16 decimal digits, 6 is represented to a precision 
of about 12 figures or 2~ X 10-l2 rad. For a tracking station with spin axis distance u of 6 X lo6 m, its longitudinal posi- 
tion is represented to a precision of about 4 X m. 

Differentiating Eq. (267) with respect to ET gives 

dET 3 6 , ~ 2 ~ ~ > 0 0 )  &%6 (radian/ephemeris second) 

From Section 111, 

UT1 = ET - (ET - Al)  - (A1 - UT1) 

and 
Affcesium - g - 2ht 

-- dUTl 
dET - -I- 9,192,631,770 

where 

t = seconds past start of current time block for polynomial coefficients f ,  g, and h of Eq. (96). 

Substituting Eq. (272) into Eq. (270) gives 

- g - 2ht ) - 4 3 b  (radian/ephemeris second) (273) 

Given il, e" is computed from Eq. (261). 

The term g + 2ht in q. (273) has a typical magnitude 
of 3 X lo-* and affects the geocentric tracking station 
velocity by about m/s, which is the accuracy of com- 
puted doppler observables. Since Afcesium is probably no 
more than 5, the term AfcesiUm/9,192,631,770 is probably 
not significant. In the derivation of Eq. (272), the annual 
relativity term of - A1 (Eq. 93) was not differentiated. 
The derivative of this term has a maximum magnitude 
of about 3 X 10-lo, which is not significant. Equation (65) 
is a more accurate expression for (E - A1) than Eq. (93) 
used in the general time transformation subroutine. The 
time derivatives of the additional relativity terms of 
Eq. (65) are 1.5 X 10-lo or smaller. 

This section gives the formulation for computation of 
doppler observables, namely, 1-way doppler, 2-way dop- 
pler, and 3-way doppler. 

For 1-way doppler, an electromagnetic signal is trans- 
mitted continuously from the spacecraft and received by 
a tracking station on earth. For 2-way doppler, the signal 
is transmitted continuously from a tracking station on 
earth, received and retransmitted by the spacecraft, and 
received continuousIy by the same tracking station. The 
signal may also be received by a different tracking sta- 
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tion; in this case, the resulting observable is 3-way dop- 
pler. For each of these cases, the frequency of the received 
signal differs from that of the transmitted signal because 
of the doppler shift. The observable is the average value 
of this frequency shift over a period of time called the 
count time or count interval T,. It is proportional to the 
average range rate along the light path from the transmit- 
ter to the receiver during T, or, more accurately, to the 
change in range along this light path during T,. The count 
intervals for successive observables are contiguous. 

The expression for computing each of these observables 
is obtained by expressing the frequency shift in a Taylor 
series, with coefficients evaluated at the midpoint of the 
count interval, and integrating term by term. The odd 
derivatives of the frequency shift vanish and the fourth 
and higher even derivatives are ignored. Thus, doppler 
observables are computed from the frequency shift and 
its second time derivative evaluated along the light path 
whose reception time at the receiving station is the mid- 
point of the count interval. 

For observables computed to an accuracy of m/s, 
truncation of the Taylor series limits the count time to 
values as low as 1-10 s when the spacecraft is very near 
the earth or another planet. When the spacecraft is in 
heliocentric cruise, count times as large as 1,000 s may 
be used. In each of these cases, however, larger count 
times may be used if the observable is computed from 
the subinterval doppler formulation. For this case, the 
count interval is divided into m subintervals, each of 
which is short enough so that the Taylor series truncation 
error is negligible. The observable is the sum of the 
observables computed for each subinterval divided by m. 

In a future version of the DPODP, the Taylor-series 
doppler formulation will be replaced or supplemented by 
the diff erenced-range doppler formulation described in 
Section XI. The primary advantage of differenced-range 
doppler is that there is no upper limit to the count time. 

The formulation for computation of 1-way, 2-way, and 
3-way doppler from the frequency shift and its second 
time derivative is given in Section VIII-B, and the fonnu- 
las for computing these two quantities are given in Sec- 
tions VIII-C and -D. The equation for computing each 
doppler observable contains a correction term A, which 
accounts for the effects of the troposphere, the ionosphere, 
and the motion of the tracking point on the antenna dur- 
ing the count time. e computation of A is described 
in Section XII. 

An intermediate output from the electronic equipment 
at the receiving station on earth is a signal whose fre- 
quency in cycles per second of station time (ST) is de- 
noted by f. This signal contains the doppler frequency 
shift16 and a bias frequency whose primary purpose is 
to keep f positive when the spacecraft range rate is nega- 
tive. For 1-way, e-way, and 3-way doppler, the expres- 
sions for f are 

(274) 

(275) 

where C, to C, are constants, defined below, and 

fs/c = spacecraft auxiliary transponder oscillator fre- 
quency, cycles per UTC second [9,192,631,770 
(1 - S )  cycles17 of imaginary cesium atomic clock 
carried by spacecraft] 

The quantity f s I c  is the frequency of the signal trans- 
mitted by the spacecraft for 1-way doppler. It is repre- 
sented by 

where 

fT,, = nominal value of f s I c  

AfTo, fT1, fT2 = solve-for parameters, specified by time 
block 

to = UTC epoch at start of time block 

tz = UTC value of spacecraft transmission 
time 

The remaining quantities in Eqs. (274-276) are defined 

f R / f T  = ratio of received to transmitted fre- 
quency (for unity frequency multiplica- 
tion at spacecraft). The received fre- 
quency f E  is measured in cycles per sec- 
ond of station time ST derived from the 

as 

16The transmitted frequency minus d e  received frequency. 
17See Subsection 111-A-4. 
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atomic frequency standard at the receiv- 
ing station. For 2-way or 3-way doppler, 
the transmitted frequency f T  is mea- 
sured in cycles per second of ST 
derived from the atomic frequency stan- 
dard at the transmitting station. For 
1-way doppler, f T  is measured in cycles 
per UTC second (9,192,631,770 (1 - S) 
cyc1eP of imaginary cesium atomic 
clock at spacecraft). 

f q  ( t , ) ,  f q  (t3) = reference oscillator frequency at trans- 
mitting station, cycles per second of 
ST (derived from transmitter atomic fre- 
quency standard), evaluated at trans- 
mission time t, and reception time t3, 
respeotively.ls The frequency f q  is reset 
periodically but remains constant be- 
tween settings. The doppler formula- 
tion presumes that f q  (t3) is constant over 
the reception interval T, for 2-way dop- 
pler and that f q  (t,) is constant over the 
transmission interval. If these intervals 
overlap for 2-way doppler, fq( t l )  must 
equal f q  ( t3).  

The doppler tracking equipment originally operated in 
the L-band frequency range.I9 Later, the system was 
changed to operate in the S-band range.2o In the interim 
period, some tracking data were obtained in the so-called 
G S  configuration (modified L-band tracking stations with 
an S-band transponder on the spacecraft). The DPODP 
has the capability of processing doppler tracking data 
from each of these frequency bands. The only change in 
the doppler formulation due to changing the frequency 
band is the change in the values of the coefficients C, 
through C,: 

c, = 

930.15 X lo6 L-band 

9.375 X lo6 + 30K1 (t3) L-S band 

96 - K ,  (t3) + lo6 S-band (E) 
lsNote that f q  ( t3 )  applies only for 2-way doppler. 
*9390-1550 MHz. 
201550-5200 MHz. 

105 
6, = 

106 

L-band 

L-S band 

S-band 

L-band 

S-band 

L-band 

S-band 

L-band 

L-S band 

S-band 

where 

K ,  (t3) = receiver reference oscillator (synthesizer) fre- 
quency at reception time t3 for L-S band 
doppler. The frequency K ,  ( t3) is different 
from fq( t l ) .  

Ks (t3) = receiver reference oscillator frequency at re- 
ception time t3 for S-band doppler. The re- 
ceiver and transmitter reference oscillators 
are physically the same and operate at the 
same nominal frequency. 

As with f q ,  both of these frequencies are reset periodi- 
cally but remain constant between settings. The doppler 
formulation presumes that K ,  ( t3) and Ks (t3) are constant 
over the reception interval T,. Two-way L S  band dop- 
pler is computed from the 3-way formulation. Hence, 
L-S band values of C3 and C, do not exist. 

The second term of Eqs. (274), (245), and (276) is the 
frequency of the received signal (relative to ST at the 
receiving station). The first term (plus C, for 2-way dop- 
pler) is the frequency of a reference signal derived from 
the receiver atomic frequency standard. 



or 2-way doppler, the reference frequency and re- 
ceived frequency are derived from the same atomic fre- 
quency standard. Hence 2-way doppler gives the most 
accurate measure of the doppler frequency shift and thus 
the range rate from the tracking station to the spacecraft. 

For 1-way and 3-way doppler, the reference signal and 
received signal are derived from different atomic fre- 
quency standards. Hence, these data types are less accu- 
rate than 2-way doppler. Furthermore, for 1-way doppler, 
the signal transmitted from the spacecraft is currently 
derived from a crystal oscillator. Because of the large 
drift in frequency of this type of oscillator, 1-way doppler 
is very inaccurate and is rarely used in the determination 
of accurate spacecraft trajectories. 

For fR/fT = 1, that is, for a spacecraft range-rate of 
zero, the values of fl, fz, and f3 are lo5 Hz for L-band 
and G S  band operation and lo6 HZ for S-band opera- 
tion. These biases are included so that the frequency f 
will remain positive for negative spacecraft range rates 
( fR/ fT  > l)* 

For the existing S-band doppler system, the transmitted 
frequency is 96 times the transmitter reference oscillator 
frequency. The spacecraft transponder multiplies the 
frequency of the received signal by 240/221 before re- 
transmitting. The reference oscillator frequency is approx- 
imately 22 MHz and hence the frequency of the signal 
received at the tracking station on earth is about 2300 MHz 
plus the effect of the doppler frequency shift. For 1-way 
doppler, the frequency of the signal transmitted by the 
spacecraft is also about 2300 MNz. For 1-way, e-way, or 
3-way doppler, the frequency of the reference signal at the 
receiving station is 96 (240/221) times the receiver refer- 
ence oscillator frequency plus the 1-MNz bias. For 2-way 
doppler, of course, the receiver reference oscillator is the 
transmitter reference oscillator. 

Noting the S-band values for C1, Cs, C4, and C5, one 
can see that the expressions for fz and f3 are identical for 
S-band operation. The only differences are that two phys- 
ically different atomic frequency standards are used for 
3-way doppler and that the frequency shifts are based 
upon different light paths. 

Equations (274276) for f may be written as 

fl = Cl - Czfs,c + CZf8,C ( k  1 - - (278) 

f3  = Cl - C5fq(t1) + c 5 f q (t 1 ) ( 1 - - t )  (280) 

Part or all of the constant part of each expression for f is 
designated as fbias: 

fl - flbias = Czfs,c 1 - - ( 3 

The signal with frequency f is input to an electronic 
counter whose register is incremented by 1 each time the 
magnitude of the signal changes from minus to plus. A 
total of N cycles are counted during the count time Tc. 
The doppler observable F which the data editing program 
passes on to the orbit determination program is:21 

2% addition to the integer cycle count, the time from the start of 
the count interval to the first positive zero crossing is observed. 
Multiplying this time by N cycles per T, seconds gives an estimate 
of the fraction of one cycle not counted at the beginning of T.. 
One minus this quantity for the next observable is the fraction 
of one cycle not counted at the end of T,. Adding these two frac- 
tions of 1 cycle to the integer cycle count gives N used in 
Eq. (287). 



where f b i a s  is computed from 
Since N is the integral of f over the count time T,, 

q. (281), (282), or (283). 

where 

t3 (ST) = station time (ST) at receiving station, de- 
rived from station atomic frequency stan- 
dard 

t3, (ST) = epoch at midpoint of count interval T ,  

Equations (284), (285), and (286) for f - f b i a s  are sub- 
stituted into Eq. (288). For 1-way doppler, the variations 
in fsl0 and the second term of Eq. (284) over the count 
interval are ignored. In each of these three equations, the 
quantity [l - ( f R / f T ) ]  is expanded in a Taylor series, with 
the reception time t3 (ST) minus the epoch t,, (ST) as 
the argument. The coefficients of each Taylor series are 
the derivatives of [1 - ( f R / f T ) ]  with respect to t3 (ST), 
evaluated along the light path with reception time 
t,, (ST). A term-by-term integration of each of these equa- 
tions gives the desired expressions for the computation 
of 1-way doppler (Fl), 2-way doppler (F2), and 3-way 
doppler (F3). 

In carrying out the integrations, the odd derivatives of 
[I - ( f R / f T ) ]  with respect to t3 (ST) vanish, and the 
fourth and higher even derivatives are ignored. The 
resulting expressions are 

F1 = CzfsIc (1 - ty 

F2 = C,fq ( t l )  (1 - k)" 
i; 

(291) 

where 

(1 - $)* = (I - f )  + 2 (I. - f ) * *  
(292) 

The quantities [l - ( f R / f T ) ] ,  [l - ( f R / f T ) ] " ,  and tl are 
evaluated along the light path whose reception time at 

the receiving station, t3 (ST), is the midpoint t,, ( S  
the count interval T, (station time). The quantity 
[l - ( f R / f T ) ] "  is the second derivative of [I - ( f R / f T ) ]  

with respect to t3(ST). The first term that has been 
truncated in Eq. (292) is (1/1,920) (2':) [l - ( f ~ / f ~ ) ] ' ~  
where iv indicates the fourth derivative with respect to 
t,(ST). For 1-way doppler, f sIa  and the second term of 
Eq. (289) are evaluated with the spacecraft transmission 
time tz for the above-mentioned light path. 

For 2-way or &way doppler, the definition of f R / f T  is 

f T  

where 

dn = 

dt,(ST) = 

dt,(ST) = 

(293) 
f R  - dn dtl (ST) dt, (ST) ---.-=- 

dt,(ST) dn dt3(S 

infinitesimal number of cycles transmitted 
at time tl .  The dn cycles travel at constant 
phase from the transmitter to the receiver 
and are received at time t , .  The propagation 
speed is the phase velocity, which is greater 
than c in the presence of charged particles. 

infinitesimal period (of station time ST) for 
transmission of dn cycles from transmitting 
station at time tl .  

infinitesimal period (of station time ST) for 
reception of dn cycles at receiving station 
at time t,. 

Equation (293) may be written as 

( - - -  dST )l d y  ( d r )  

(dUTC), dT (dt), 
(294) 

dt 1 dt1 dt, 
dST dUTC d~ dt, dt3 

-- f R -  dUTC - _  
f T  - - 

where 

dt,, dt,, dt3 = ephemeris time (ET) value of transmis- 
sion interval [ dt, (ST)] ,  reflection interval 
at the spacecraft, and reception interval 
[dt3 (ST)]. 

The ratios dtl/dtz and dt,/dt, will be obtained by dif- 
ferentiation of the light time equations for the up and 
down legs of the light path. The factors (dT/dt) at tl 
and t3 transform dt, and dt, from ephemeris time to 
proper time P2 obtained from imaginary ideal atomic 

Z Z T h i s  time scale was defined in Section I1 after Eq. (58). 
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clocks at the transmitting and receiving stations; they are 
computed from q. (58) using the Newtonian potential 
at each tracking station and the heliocentric velocity of 
each tracking station. 

The factor dUTC/dr converts the transmission and 
reception intervals from seconds of atomic time T to sec- 
onds of UTC atomic time. These i n 7 0  atomic time scales 
differ only in the length of the second (the number of 
cycles defined equal to 1 s). 

The factors dST/dU at t, and t3 convert the trans- 
mission and reception intervals from UTC seconds ob- 
tained from ideal atomic clocks to seconds of station time 
ST obtained from the actual atomic clocks at the trans- 
mitting and receiving stations (the same station and clock 
for 2-way doppler). The transformation from UTC to ST 
at each tracking station is specified by Eq. (94), repeated 
here: 

UTC - ST = a + bt + ct2 (295) 

where a, b, and c are specified by time block and t is in 
seconds past the start of the time block. Let the coeffi- 
cients of Eq. (295) which apply for the receiving station 
at t3 and for the transmitting station at t, be denoted by 
subscripts R and T respectively. Also, define F by: 

dUTC dUTC 

Then, since dST/dUTC is extremely close to unity, 

where the transmission and reception times t, and t3 are 
expressed as seconds past the start of the time blocks for 
a, b, and c used at t, and t3, respectively. Also, define 
FR/FT by 

Then, substituting 
gives 

gs. (296) and (298) into Eq. (294) 

( l - &  f T >  = ( l + F )  ( 1 - -  2) - F  (299) 

The effect on 2-way doppler of the variation in F dur- 
ing the count interval T,  is about m/s, which is com- 
pletely negligible. The corresponding effect on 3-way 
doppler is about m/s, which is the desired accuracy 
for computed doppler observables. owever, the error 
in 3-way doppler due to the unknown difference in fre- 
quency of the two atomic frequency standards (Af/f 
2 X lO- l l )  is a few mm/s, which probably cannot be 
reduced to the 10-5-m/s level by estimating the b and c 
coefficients of UTC - ST for the transmitting and receiv- 
ing stations. Thus, the variation in F during the count 
interval T ,  is ignored and 

Substituting Eqs. (299) and (300) into Eq. (292) gives 

(301) 
where 

Substitution of Eqs. (301) and (302) into Eqs. (290) and 
(291) gives 2-way and 3-way doppler as a function of 
- (FR/FT)] ,  [I - (FR/FT)I * ', and F. 

For 1-way doppler, the definition of f R / f T  is 

since fsIc is referenced to an imaginary UTC atomic clock 
on board the spacecraft. This equation may be written as 

.- 
( m ) , d T \ d t ) ,  

As in Eq. (296), define Fl by 

1 
+ = ( 

Then, 

(305) 

J 



where t3 is expressed as seconds past the start of the time 
block for a, b, and c used at t3. Also, define F R / F T  €or 
1-way doppler by 

the midpoint t3,n (ST) of the count interval T,. Expres- 
sions for these quantities are derived in Sections VIII-C 
and -D respectively, starting from q. (298) for F R / F T  for 
2-way and 3-way doppler and Eq. (307) €or 1-way dop- 
pler. The quantities fs/c, F,  and Fl are computed from 
Eqs. (277), (297), and (306), respectively. The quantities 
[1 - ( F R / F T ) l ,  [1 - (FR/FT)I.*7 F ,  Fz, fs/c, t z ,  ti, and A 
are evaluated with quantities obtained from the light time 
solution for the above-mentioned light path (see Sec- 
tion VI). 

(307) 
F R  - (%)z dt, -_-- 

Substituting Eqs. (305) and (307) into Eq. (304) gives 
Eqs. (299-302) with F replaced by F,  and F R / F T  defined 
by Eq. (307). 

Substituting Eq. (301) into Eqs. (289),23 (290), and (291) 
gives the final expressions for the computation of 1-way 
doppler (Fl), 2-way doppler (F2), and 3-way doppler (F3). 
Each of these expressions contains an additive correc- 
tion A, which accounts for the effects of the troposphere, 
the ionosphere, and the motion of the tracking point on 
the transmitting and receiving antennas during T,. The 
computation of A is described in Section XII. The expres- 
sions for F1, F2, and F3 are 

Equations (308), (309), and (310) are used to compute 
1-way, 2-way, and 3-way doppler using either the L-band, 
L-S band, or S-band values of the coefficients Cz, C3, and 
C,. In the G S  band configuration, the so-called 2-way 
doppler observable is actually 3-way doppler (from the 
electronics point of view) obtained using the same track- 
ing station as the transmitter and the receiver. This data 
type is computed from the 3-way formula, Eq. (310). 

Another data type not previously mentioned is coherent 
3-way doppler, which is essentially 2-way doppler ob- 
tained from two different tracking stations. The two sta- 
tions are only a few kilometers apart and the reference 
frequency fq(t3) is beamed from the transmitter to the 
receiver via microwave link. Coherent 3-way doppler is 
computed from the 2-way formula, Eq. (309). 

- cz [AfT, f f~~ ( t z  - t o )  + f~~ ( t z  - to)'] (308) The term in Eq. (308) containing F, and the term in 
Eq. (309) containing F are not included in the current 
DPODP formulation. The latter wiIl be added at the (( )* [ ( )*] earliest convenience, and the former will be added when 

board the spacecraft instead of the currently used crystal 
oscillator. 

FR FR 
FT F T  

F2=C3fq( t1 )  1 -  - - F 1- 1- - + A  fs,c is derived from an atomic frequency standard on 

(309) 

Because of truncation of the fourth and higher even 
derivatives of [l - (FR/FT)] in Eq. (302), the doppler 
observables are limited to count times as low as 1-10 s 
when the spacecraft is near a planet and no more than 
roughly 1,000 s in heliocentric cruise. However, larger 
count times may be used if the subinterval doppler for- 
mulation is utilized. With this method, the count time T ,  
is divided into m subintervals of length T,/m. For each 
subinterval, a light time solution is obtained for the light 
path with reception time t 3  (ST) equal to the midpoint 
of the subinterval, and a doppler observable F (1-way, 
e-way, or 3-way doppler) is computed using T,/m in 
place of T ,  in Eq. (302). 

l - 5 ) ~ ~ - F [ l - ( l - ~ ) * ] + A  FT 

(310) 

where [l - (FR/FT) ]*  is given by Eq. (302) in terms of 
[1 - (FR/FT)] and its second derivative with respect to 
t3 (ST), [I - (FR/FT)]", evaluated along the light path 
whose reception time at the receiving station, t3(ST),  is 

z3With F replaced by F,. 
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Let the observable computed for subinterval i be de- 
noted as Fi. Then, the observable for the overall count 
interval T, is given by 

Sohtion of these equations (see Section VI) gives the 
following quantities: 

1 m  

This follows directly from Eq. (287). 

Predicted values of the number of cycles N which a 
station will observe in a given count interval T, are com- 
puted from 

where F = Fly F2, or F3 and fbias is the corresponding bias 
frequency from Eq. (281), (282), or (283). Equation (312) 
follows directly from Eq. (287). 

. Doppler Frequency Shift 

The expression for [1 - (FR/FT)] used to compute 
2-way and 3-way doppler and also the expression used to 
compute 1-way doppler are derived in this section. The 
definitions of F R / F T  are Eq. (298) for 2-way and 3-way 
doppler and Eq. (307) for 1-way doppler, evaluated along 
the light path whose reception time at the receiving sta- 
tion, t3 (ST), is the midpoint of the count interval T,. The 
expressions for [I - (FR/F~)] are obtained as expansions 
in powers of l/c. In order to obtain the desired accuracy 
of lC5 m/s for computed doppler, all terms to order l/c3 
are retained. 

The terms atl/&, and dt,/dt3 are obtained by differ- 
entiation of the light time equations for the up and down 
legs of the light path. The light time equation for a given 
leg of the light path is Eq. (88) or (203). For the up and 
down legs, it is given by 

and 

tl, t,, t3 = ephemeris time (ET) values of transmission 
time at tracking station on earth, reflection 
time at spacecraft (or transmission time for 
1-way doppler), and reception time at track- 
ing station on earth, respectively. The station 
time (ST) value of t3 is the midpoint of the 
count interval T,. 

rl, r,, r3 = heliocentric position vectors of transmitting 
station on earth at tl, spacecraft at t,, and 
receiving station on earth at t3, respectively, 
with rectangular components referred to the 
mean earth equator and equinox of 1950.0. 

ti, Y;,Yj = heliocentric velocity, acceleration, and jerk 
vectors of participant i at its epoch of par- 
ticipation ti (i = 1,2, or 3). The dots indicate 
differentiation of ri with respect to ephem- 
eris time. 

The quantities on the right-hand sides of Eqs. (313) and 
(314) are 

r1 = (rl * rl>'h (317) 

c = speed of light, km/s 

/L# = gravitational constant of sun, km3/s2 

y = solve-for free parameter of the 
theory of relativity. The parameter y is related 
to W, the coupling constant of the scalar field, 
through Eq. (41). 



q. (313) with respect to t2 gives 

dr, dtl dr, arI2 ar12 dt, +-+-+-- (1 + 7 )  pa . dt, dt, dt, at, at, dt2 
-- 

+ c3 r1 + r2 + r12 

c3 r1 + T2 - Tl2 

The derivative of Eq. (314) with respect to t3 is obtained 
from Eq. (320) by replacing the subscripts 1 and 2 by 
2 and 3, respectively. The expression for dtl/dt2 obtained 
from Eq. (320). is unity plus terms of order l/c and greater 
arising from the l/c (Newtonian) term of Eq. (313) plus 
a term of order l/c3 arising from the l/c3 (relativity) term 
of Eq. (313). 

(327) 

Since terms of order greater than l/c3 are not retained 
in dtl/dt2 from Eq. (320), the factor dt,/dt2 appearing in 
the l/c3 terms may be approximated by unity. The deriva- 
tives appearing in Eq. (320) and combinations of them are 
given by 

(329) 

Substituting these expressions into Eq. (320) and using 
dt,/dt, = 1 in the l/c3 terms gives 

(323) 

Using the notation where 

(331) 
;, + i, - i,, 
r, + T ,  - T,a 

i, + i, + i,, 
9.1 + T ,  + T i ,  

1 3  2 
2 +  3 

- 
€12 = 

the remaining terms are The first term of Eq. (331) approaches 0 f 0 as the dis- 
tance from the light path to the center of the sun ap- 

owever, because of the finite radius of 
the sun (700,000 km), the limiting indeterminacy will not 
occur. For a light ray grazing the surface of the sun and 
rl = r, = 50 AU, the sum T ,  + r, - T,,  is about 65 km. 
Since ( T ,  + T, )  and r12 are 100 AU, which is represented 

(324) 
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to km on the 16-decimal-digit BM 7094 computer, 
the 65-km difference is represented to 7 decimal digits. 

For any case where the light path grazes the surface of 
the sun and rl + r2 z r12, the contribution to the space- 
craft range rate from the first term of Eq. (331) is a 
maximum of about 0.5 m/s (for a spacecraft velocity of 
100 km/s). Since the denomination of this term is repre- 
sented to at least 7 decimal digits, the contribution of 
0.5 m/s is accurate to at least m/s, which is smaller 
than the desired accuracy of m/s for computed dop- 
pler. Thus, the numerical difficulties associated with the 
first term of Eq. (331) are not significant. 

Let 

and, for the down leg, 

Substituting Eq. (332) into the reciprocal of the denomi- 
nator of Eq. (330) and expanding gives 

(334) 

Multiplying by the numerator of Eq. (330) and retaining 
terms to order l/c3 gives 

From Eq. (58), the quantities (ds/dt),, (d~ /d t )~ ,  and 
(ds/dt), are given by 

w =[l-F-($)2] i=1,2,or3 

(337) 

where 

+; = Newtonian potential at participant i at its epoch 
of participation ti 

i; = heliocentric velocity of participant i at its epoch 
of participation ti 

The potential +; is given by 

(338) 

(335) 
l+ 2 
2 + 3  

where the summation over i includes the sun, all of the 
planets, and the moon, and rij is the coordinate distance 
from the participant i to the center of the body i. The 
velocity & is obtained from 

Since terms of order greater than 1/c3 are not retained, 
Eq. (337) may be approximated by 

(340) 

For 2-way or 3-way doppler, 

3 



where terms of order 1/c4 have been ignored. Similarly, for 1-way doppler, 

Substituting Eqs. (341) and (336) into Eq. (298) and retaining all terms to order l/c3 gives the desired expression for 
[ 1 - ( F R / F T ) ]  for 2-way or 3-way doppler: 

(343) 

This quantity is used in Eq. (302), which is substituted into Eq. (309) or (310) to compute 2-way or 3-way doppler. Simi- 
larly, substituting Eq. (342) and dt2/dt3 obtained from Eq. (335) into Eq. (307) gives the expression for [ 1 - ( F R / F T ) ]  

for 1-way doppler: 

Equation (344) is used in the computation of 1-way dop- 
pler from Eqs. (302) and (308). Note that setting all up-leg 
factors equal to zero in Eq. (343) and changing $1 and 8, 
to +2 and 8, gives Eq. (344). 

For 2-way or, 3-way doppler, +l is very nearly equal 
to $3. The contribution to (& - $3) from the other planets 
and from the moon affects the observable by less than 

m/s and hence can be ignored. Thus, only the poten- 
tial from the sun and from the earth needs to be con- 
sidered, and and $3 are given accordingly by 

(345) 

(346) 

where and e are the geocentric radii of the transmit- 
ting and receiving stations, respectively. The second terms 
of Eqs. (345) and (346) are required for the computation 
of 3-way doppler but cancel in (+1 -43) used for 2-way 
doppler. 

For 1-way doppler, +z and $3 are computed from 
Eq. (338) as indicated after that equation. 

The computation of doppler observables requires an 
expression for [ 1 - ( F R / F T ) ] *  , which is the second deriva- 
tive of [ l  - ( F R / F T ) ]  with respect to the reception time 
t3(ST),  evaluated along the light path whose reception 
time is the midpoint of the count interval T,. The expres- 
sion for [l - ( F R / F T ) ] * '  for 2-way and 3-way doppler 
and also the expression for 1-way doppler are derived in 
this section. They are obtained by differentiation of the 
corresponding expressions for [ 1 - (??R/FT)] obtained 
from Section VIII-C. 

In order to limit the doppler truncation error (due to 
ignoring the fourth and higher even derivatives of the 
frequency shift in Eq. 302) to m/s or less, count times 
as low as 1-10 s must be used when the spacecraft is 
very near one of the celestial bodies of the solar system; 
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alternatively, when the spacecraft is in heliocentric cruise, 
count times as large as 1,000 s may be used. 

For either of these situations, the l/c3 terms of 
[ 1 - ( F R / F T ) ]  affect doppler observables by less than 

m/s. Hence, the expressions for [ 1 - ( F R / F T ) ]  * * are 
obtained by differentiating Eqs. (343) and (344), ignoring 
the l/c3 terms. For 2-way or 3-way doppler, the variations 
in (+1 - +,)/c2 and (i? - i3/2c2 over the count interval 
affect the observable by less than m/s; hence these 
terms are also ignored. For 1-way doppler, the corre- 
sponding terms and their variations are quite large. How- 
ever, they have not been included in the expression that 
is differentiated because of the inaccuracy of 1-way dop- 
pler obtained by using a crystal oscillator on board the 
spacecraft. 

In the future, when 1-way doppler derived from an 
atomic frequency standard becomes available, it will be 
mandatory that [ 1 - ( F R / F T ) ]  * * include the derivatives 
of (& - +,)/c2 and (B; - i3/2cz .  For 2-way or 3-way 
doppler, [ 1 - F R / F T ]  * is obtained from 

For 1-way doppler, the corresponding expression is 

The terms in Eqs. (347) and (348) are functions of the 
heliocentric position and velocity vectors of the transmit- 
ter, spacecraft, and receiver at their epochs of participa- 
tion. Since the time unit for the velocity, acceleration, and 
jerk vectors of each participant is ephemeris time (ET), 
the derivatives of [l - ( F R / F T ) ] ,  which are obtained 
naturally, are the first and second derivatives with respect 
to t3 (ET). Given these quantities, the second derivative 
with respect to t,(ST) is 

The second term of Eq. (349) affects doppler observables 
by less than 10-lo m/s and hence can be ignored. The 
second derivative of [I - ( F R / F T ) ]  with respect to t3 (ET) 
contains l/c and l/cz terms and hence is accurate to 
about 8 figures. The multiplicative factor in the first term 
of Eq. (349) is unity to about this many figures; hence, it 
may be ignored. Thus, [ 1 - ( F R / F T ) ]  * * is computed from 

In terms of first and second derivatives of the terms of 
Eq. (347) with respect to t ,  (ET), denoted as t,, 

which applies for 2-way or 3-way doppler. Similarly, from 
Eq. (34% 

(352) 

which applies for 1-way doppler. 

The quantities i12, i 2 3 ,  Ijl2, and l j 2 3  are functions of 
tl(ET), &(ET), and &(ET) which will be denoted as 
tl, tz, and t,, respectively, in the remainder of this section. 

(349) 
d2 dt3 (ET) d d't, (ET) 

(I - $)] dt3 (ST)2 dt, (ST)z = [ dt, &')2 ( - 2)] [ dt, (ST) ] + [ 



In order to obtain derivatives of these quantities wi 
respect to t3, the following subpartiall derivatives are 
required: 

Substituting Eqs. (356) 

The terms above are derived from Eqs. (313) and (314), 
ignoring the 1/c3 relativity terms. 

The following derivatives are required to order l/co: 

The first and second derivatives of ;12, ;23, fi12, and 6 2 3  

with respect to t, are functions of the following partial 
derivatives, whose s u m s  are denoted as: (364) 

. ar,, al;, 

at, at, 
r,, = - + - (355) 

1 - 2  
2 +  3 

.. a h ,  ai,, r,, = -+ - at2 at, Differentiating Eq. (362) with respect to t3, using Eqs. 
(353) and (354), gives 

... a;.;, a?,, 
TI ,  = -+ - at, at, 

a ~ , ,  
at, PI2 = - - 

a;,, 
at, a t ,  at, 

a& 
at, at, at, 

-- - .. a h z  a h 2  p, ,  = -+ - - 

... a i ~  afi12 - -- p,,  = - + - - 

1 + 2  
2 + 3  d2h, a?,, ( a> + a?,, [ 1 - - (ilz + ;,,)I - 1 - -  -=- 

dtg at, at, C 
1 + 2  
2 +  3 

1 + 2  
2 - 3  

Since 1/c2 terms are ignored, the l/c terms were 
entiated by inspection using Eqs. (353) and (354) 
to unity. Substituting Eqs. (357) and (360) gives 

differ- 
equal 1 + 2  

2+ 3 

d'i.1, ... 1 
dtg Ti2 f C [2 (+125z - +a%,) + %z (&z - Vm)]  

where the previously dehed  quantities i,, and $,, have -= 
been included for completeness. Equation (358) follows 
from Eqs. (332), (333j, (325), and (328). 'Substituting (367) 
Eq. (358) into the first form of Eq. (359), changing the 
order of differentiation in the second mixed partial deriva- 
tive, and substituting Eq. (355) gives the second form of 
Eq. (359). Similarly, the second form of Eq. (360) follows 

Similarly, 

(368) 
d2i2, .*. 1 
dtg r23 + 7 (2+23?;3 + ;23&3) from the second form of Eq. (359) and from Eq. (356). -= 

Using (353) and (354), one obtains 

d;,, ai,, dt, a& dt, +-- dt3 at, dt, at, dt3 
-- --- 

and, to order l/co, 



Substituting Eqs. (362-365) and qs. (367470) into Eqs. (351) and (352) gives, for 2-way and 3-way doppler, 

The quantities in Eqs. (371) and (372) are defined in Eqs. (355360). They are computed from: 

rlZ r,, = - i,, 
rlz 

rl2 p,,  = - * i., 
TlZ 

1 + 2  
2 + 3  

1 + 2  
2+ 3 

1 + 2  
2+ 3 

l+ 2 
2+ 3 

1+ 2 
2+ 3 

1 + 2  
2 + 3  

where 

. .. ... 
rij = rj - ri r+ r,x, r 

Equations (373) and (376) are Eqs. (326), (329), (332), and (333). The remaining equations follow by successive differ- 
entiation according to Eqs. (356), (357), (359), and (360). 

This section gives the formulation for computation of 
range observables. 

There are several different range tracking systems. 
owever, all of them are conceptually the same. For each 

system, an electromagnetic signal is transmitted from a 
tracking station on earth at time t,, received and retrans- 
mitted by the spacecraft at time tz, and received by the 

same tracking station at time t3. The mathematical repre- 
sentation of the range observable p is 

p = (t3 - t1),* F ,  modulo M 

where 

(t3 - t l ) sT  = round-trip time of the signal in seconds of 
station time ST (derived from the atomic 
frequency standard at the tracking station) 

7 



F = conversion factor from seconds of station 
time ST to the units of the range observ- 
able 

M = modulo number. The largest integer mul- 
tiple of M which is less than (t3 - ti),* F 
is removed from this quantity, leaving the 
observable p, which is less than M. This 
operation on a number n will be referred 
to as “modding” n by M. 

The conversion factor F and modulo number M for each 
ranging system are given in Section IX-C. 

The first step in obtaining the computed value of a 
range observable is to solve the light time equations for 
the down and up legs of the light path, whose reception 
time t3 (ST) is the observation time. This light time solu- 
tion, described in Section VI, gives the quantities used 
to compute a precision value of the round-trip light time 
in seconds of ephemeris time. This precision value is con- 
verted to seconds of station time by using the time trans- 

formations of Sections I1 and 111. Corrections are added 
to account for the effects of the troposphere, the iono- 
sphere, and the offset of the tracking point on the antenna 
from the earth-fixed “station location” on the antenna 
mount. In addition, the estimated value of a range bias 
is added. This sum for the round-trip station time is multi- 
plied by F and modded by M ,  as indicated above. The 
expression for computing the range observable p is given 
in Section IX-B. The computation of the troposphere, 
ionosphere, and antenna corrections is described in Sec- 
tion XII. 

Section XI contains the formulation for computation 
of doppler observables from differenced range observ- 
ables divided by the count time T,. The required changes 
to the range observable formulation of this section, which 
are minor, are described in Section XI. 

. ~ o ~ m M ~ a t i o ~  

The range observable p, obtained from any of the track- 
ing systems described in Section IX-C, is computed from: 

Equation (379) is evaluated with quantities obtained 
from the light time solution for the observable, listed 
after Eq. (314). The epochs of participation ti, tz, and t3 
are available in the ET, Al,  UTC, UT1, and ST time 
scales. The quantities ri2, r23, rl, rz, and r3 are computed 
from Eqs. (315-319). The definitions of c, pN, and y fol- 
low Eq. (319). The time transformations (ET - Al), 
(A1 - UTC), and (UTC - ST) are given by Eqs. (93), 
(95), and (94), respectively. The quantity 8 (ET - Al), to 
be discussed below, represents additional relativity terms 
of (ET - A l )  not contained in Eq. (93), which is used 
in the general time transformation subroutine of the 
DPODP. 

Each of the four time transformations of Eq. (379) is 
evaluated with the transmission time ti and with the re- 
ception time t3, expressed in one of the two time scales 
related by the transformation. Either time scale may be 

used, but the same time scale must be used at both tl 
and t3. The remaining terms of Eq. (379) are 

R, = estimated constant range bias (specified by 
time block for each station) 

Aip ( j )  = range correction in meters due to i = A (an- 
tenna offset), T (troposphere), or I (iono- 
sphere) for down leg ( j  = t3) or for up leg 
(i = ti) 

The sum of the first two terms of Eq. (379) is the right- 
hand side of the light time equation for the up leg of the 
light path (Eq. 313). Similarly, the sum of terms 3 and 4 
is the right-hand side of the light time equation for the 
down leg of the light path (Eq. 314). The sum of these 



four terms is an accurate expression for the round-trip 
ephemeris time. The largest error in the computation of 
this quantity arises from truncation of the epochs of par- 
ticipation beyond a precisionz4 of s. 

the maximum contributions to 1-way range (p/2) from 
each of terms 3-10 of Eq. (65): 

Term No. Contribution to 1-way range 
(m/AU of 1-way range) 

The maximum conceivable heliocentric velocity of the 
spacecraft is 1,000 km/s. For this velocity, the maximum 
error in the computed round-trip ephemeris time due to 
truncation of the epochs of participation is 1.4 X s. 
The corresponding error in range is 0.4 m round trip or 
0.2 m one way. The typical errors are at least one order 
of magnitude lower than these figures. 

3 
4 
5 
6 
7 
8 
9 

10 

50 
22 
0.4 
0.007 
1 
0.02 
0.6 
0.01 

An alternative method for obtaining the round-trip 
ephemeris time would be to subtract the ET values of the 
epochs of participation t3 and tl .  However, this difference 
could be in error by as much as 2 X lo-‘ s. The corre- 
sponding range error would be 60 m round trip or 30 m 
one way, which would be unacceptable. 

The time transformations of Eq. (379) convert the pre- 
cision round-trip light time from an interval of ephemeris 
time to an interval of station time ST. The remaining 
terms of Eq. (379) account for the effects of the tropo- 
sphere and the ionosphere, the offset of the tracking point 
on the antenna from the earth-fixed “station location,” 
and a constant range bias R,, whose value may be esti- 
mated. 

Section XI contains the differenced-range doppler for- 
mulation, Le., the formulation for computing doppler 
observables from differenced range observables divided 
by the count time. The required analytical change to the 
range observable formulation consists of a more accurate 
expression for the (ET - Al) time transformation used 
to transform the round-trip light time from ephemeris 
time to station time. The required expression is Eq. (65), 
which is derived in Appendix B. 

The (ET - Al) time transformations in Eq. (379) are 
evaluated with the general time transformation subrou- 
tine of the DPODP. This subroutine computes (ET - Al) 
from Eq. (93), which consists of the first three terms of 
Eq. (65). Currently, S(ET -Al) in Eq. (379) consists 
only of term 4 of Eq. (65). The following listing gives 

24On the 16-decimal digit IBM 7094 computer, time is represented 
as seconds past January 1, 1950, 0” to a precision of 0.6 X 10-7 s 
from 1967 to 1984. 

The observables obtained from the Tau or Mu ranging 
systems described in Section IX-C have a potential accu- 
racy of about 1 m or slightly better. In order to obtain 
the maximum benefits from these accurate data types, the 
computed range observables should have an accuracy of 
about 0.1 m. For the forthcoming Grand Tour missions 
to the outer planets, the range to the spacecraft will be 
several tens of AUs, and all of the relativity terms of 
Eq. (65) will contribute more than 0.1 m to it (see the 
listing above). Therefore, terms 5 through 10 of Eq. (65) 
should be added to 8 (ET - Al). There is a small monthly 
variation in (ET - Al), which is not included in Eq. (65) 
since it does not significantly affect differenced-range 
doppler. However, it does affect 1-way range by about 
0.05 m/AU. Hence, an expression for computing this term 
should be derived and added to 8 (ET - Al). 

The second and fourth terms of Eq. (379) are the rela- 
tivistic corrections to the light time for the up and down 
legs of the light path. These terms become very large 
when the spacecraft approaches superior conjunction and 
the minimum distance from the up and down legs of the 
light path to the surface of the sun becomes very small. 
For this situation with the light ray grazing the sun of 
radius R and with the earth and the spacecraft at the 
same distance r from the center of the sun, the relativistic 
correction to the light time for each leg of the light path 
is given approximately by 

With y = 1, its general relativity value, r = 1AU = 
150X lo6 km, and R =0.4X lo6 km, =&is 1-way light 
time correction amounts to 36 km/c. The round-trip range 
observable is affected by 72 km/c or 240 ,ps. This is the 
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only really large effect of general relativity on earth- 
based tracking data. Fitting to tracking data obtained 
from a spacecraft which is in the vicinity of superior con- 
junction provides this so-called fourth check of general 
relativity. Presuming that the observed minus computed 
range residuals will be vastly smaller when the second 
and fourth terms of Eq. (379) are turned on, fitting to 
these tracking data should provide an estimate of the 
parameter y and hence, from Eq. (a), the coupling 
constant o of the scalar field of the Brans-Dicke theory 
of gravitation. 

To date, range tracking data have been obtained from 
five different range tracking systems: the Air Force Eastern 
Test Range (AFETR) pulse-radar ranging system, the 
Mark 1 and Mark 1A lunar ranging systems, and the 
Tau and Mu planetary ranging systems. The latter four 
systems have operated at tracking stations of the Deep 
Space Network. The lunar ranging systems are used for 
lunar missions and during the early phases of planetary 
missions. The planetary ranging systems are used for all 
deep space applications. The Mark 1 system has been 
replaced by d e  Mark 1A system. The Mu system is the 
latest research and development planetary ranging sys- 
tem. Both the Tau and Mu ranging systems have a poten- 
tial accuracy of a few meters and possibly as low as 1 m 
or slightly better. Table 1 gives d e  values of the conver- 
sion factor F and the modulo number M for each of these 
systems, where 

c = speed of light, km/s 

fq ( t l )  = reference oscillator frequency at transmitting 
station, cycles per second of station time ST 
(derived from transmitter atomic frequency 
standard), evaluated at transmission time t l  

n = number of components of ranging code used 
with Mu ranging system 

The frequency fq(t ,)  is the same quantity used in the 
computation of doppler observables. The number n asso- 
ciated with the Mu system varies from a typical value of 
10 to the maximum system capability of 18. 

servables are referred 

station to the spacecraft. 
1.04 m. Using the nomi- 
gives approximately the 

The units of the Tau 

Ranging system 

AFETR 

Mark 1 

Mark 1A 

c 
None 

785,762,200 

96 X 1,496,500 785,762,208 

- 
2 
- ;y f, (11) 

1.00947x 
1.0002 

64 x zn 
3 f ,  (fl) 

loo 

x ,os 

Id 

lo6 

and Mu observables are round-trip nanoseconds and 
microseconds, respectively. 

The Mark 1 and 1A range observables are modded by 
approximately 800,OOO km in 1-way range to the space- 
craft. The corresponding figure for the Tau system is 
150,000 km. Using the maximum value of n = 18 and 
f q  ( t l )  = 22 X lo6 Hz, the Mu range observables are 
modded by about 38,000 km, one way. 

The AFETR range observables computed by the 
DPODP are expressed in one-way kilometers and are not 
modded; they are used primarily for study purposes. 

For all practical purposes, all of the range tracking sys- 
tems except the Mu system provide a continuous measure 
of the range observable p given by Eq. (379). The Mu 
system provides one range observable each time the rang- 
ing system is initialized during the pass of the spacecraft 
over the tracking station. Also, it provides a direct mea- 
sure of the correction to all 2-way doppler observables 
obtained during the pass due to charged particles of the 
ionosphere and interplanetary medium. 

The output from the Mu ranging system at time t is 
Po 01, given by 

The ranging system is initialized at some epoch to during 
the pass of the spacecraft over the tracking station. The 
first term is the range observable p obtained at time t .  The 
second term is counted doppler from d e  epoch to to t. It is 
the 2-way doppler observable F2 of Section VIIH multi- 
plied by the count time T,, which extends from to to t ,  and 
with the units converted from those of F2 to those of p. 



In the absence of charged particles, counted doppler is 
equivalent to differenced range:25 

and the output from the Mu ranging system would be 

That is, the output would be constant and equal to the 
range p at the initialization epoch to. With charged par- 
ticles present, 

p (t)corrected = p (t) Acp (t) 
and 

where A,p (t) is the correction to p (t) due to charged par- 
ticles. The effect of charged particles on counted doppler 
is the negative of the correction to the corresponding 
differenced range observables. Thus, when doppler ob- 
servables are computed from differenced range observ- 
ables, the sign of the charged particle correction to each 
range observable must be changed. From the two equa- 
tions above, the output of the Mu ranging system with 
charged particles present is 

The output at t = to is 

This quantity is equal to p computed from Eq. (379), with 
the reception time t3 equal to the initialization epoch 
to. The charged particle correction aCp(to) is the round- 
trip ionospheric correction [AI,p (t3) + Alp (tJ] F/103c of 
Eq. (379). The output p o ( t )  for t > to is not a true range 
observable with reception time to because the charged 
particle correction 2A,p (t) - A,p (to) does not equal the 

25However, differences can arise from sources other than charged 
particles, such as from variations in the electrical path length 
through the range tracking system which differ from those of the 
doppler tracking system. 

correction Acp (to) for a range observable. Thus, the out- 
put from the Mu ranging system is a range observable p 
corresponding to Eq. (379) only at an initialization epoch. 

The output p o ( t )  of the Mu ranging system evaluated 
at an epoch tz minus the value at an epoch tl is 

This quantity is an observed value of twice the charged 
particle correction to the 2-way doppler observable whose 
count time T ,  extends from tl to tz. 

This section gives the formulation for computing angu- 
lar observables, which are of two types: (1) directly ob- 
served angles of the incoming radiation relative to the 
tracking station’s earth-fixed reference coordinate system, 
and (2) optical angles-topocentric right ascension (Y and 
declination &obtained from reduction of photographic 
plates. As opposed to directly observed angles, optical 
angles do not contain effects due to stellar aberration and 
atmospheric refraction (to f i s t  order). 

The directly observed angle pairs are: (1) hour angle 
HA and declination 6-most DSN stations; (2) azimuth u 
and elevation y-AFETR stations and some DSN stations; 
(3) X, Y angles-Manned Space Flight Network (MSFN 
stations); and (4) X’, Y’ angles-MSFN stations. 

The topocentric coordinate systems and unit vectors 
associated with each directly observed angle pair are 
described in Section X-A. The formulation for computing 
the direction of the incoming radiation and each pair of 
angular observables is given in Section X-B. Corrections 
to the directly observed angles due to small solve-for 
rotations of the earth-fixed reference coordinate system 
are given in Section X-C. Partial derivatives of the angu- 
lar observables with respect to the heliocentric positions 
of the spacecraft and the tracking station are given in 
Section X-D. These will be used in Section XIV to form 
the partial derivatives of the angular observables with 
respect to the solve-for parameters. 

yste kS 

The reference coordinate system at each tracking sta- 
tion is rigidly fixed to the earth, and its orientation relative 
to the true pole, equator, and prime meridian varies with 



the motion of the pole (see Section VII). The maximum 
excursion of the earth‘s axis of rotation from its mean 
position is about 10 m, and since the latitudes of all track- 
ing stations are low (less than 45 deg), the maximum 
change in the orientation of the reference coordinate 
system from its mean orientation relative to the true 
pole, equator, and prime meridian is about 1 arc second. 
The maximum attainable accuracy for directly observed 
angles is about 0.002-0.003 deg or 7-11 arc seconds, and 
thus the 1-arc second variations due to polar motion may 
be neglected. Therefore, the computation of directly ob- 
served angles is based upon a fixed orientation of the 
reference coordinate system relative to the true pole, 
equator, and prime meridian, 

observer’s meridian contains the unit vectors 
makes an angle ( e  + h) with the vernal e 

e = true sidereal time = Greenwich hour angle of true 
equinox at reception time t3 

pole 
x = east longitude of tracking station, relative to true 

The sidereal time 19 is computed from Eq. (269) and asso- 
ciated equations, using t3 (UT1) and t3 (ET). The unit 
vector E is normal to P and . The angle HA is the hour 
angle of the spacecraft. 

Nominal computed values of directly observed HA and 
6 are based upon the geometry of Fig. 5. However, the 
reference coordinate system QEB may be rotated through 
the small angles 5’ about .Q, E about E, and v’ about P, 
thus changing the angle HA in the QE plane and the 
angle 6 normal to it. Corrections to the nominal com- 
puted values of HA and 6 due to the solve-for rotations 
c‘, E, and 7’ are given in Section X-C. 

1. Right ascension, hour angle, and declination. Fig- 
ure 5 shows a rectangular coordinate system centered 
at the tracking station on earth. The x- and y-axes are 
parallel to the earth’s true equator; the x-axis is toward 
the true vernal equinox, and the z-axis is parallel to the 
true axis of rotation of the earth, directed north. 

The unit vector E is directed from the tracking station 
at the reception time t3 to the spacecraft (a free space- 
craft or a station on some celestial body other than earth) 
at its transmission time t?. The angles CY and 6 are the 
right ascension and declination of the spacecraft. The 

The unit vectors D and A in the directions of increasing 
declination and right ascension are used in computing the 
partial derivatives of CY, 6, and HA with respect to the 
estimated parameters. The vector A is normal to L and 
The rectangular components of D and A along x, y, and 
z are 

z 

2. The north-east-zenith coordinate system. Figure 6 
shows a rectangular coordinate system whose origin coin- 
cides with the center of the earth. The x- and y-axes are 
in the earth’s true equator with the x-axis directed toward 
the true vernal equinox and the z-axis along the instan- 
taneous axis of rotation, directed north. The unit vectors 

ginate at the tracking station S, whose 
an angle (e + h) with the x-axis. The 
s contained in the meridian plane and 

makes an angle +g with the true equatorial plane, whe 
+g is the comput . The north vector 

the north and to the east, respectively. The angle ’ 

a-y, X-Y, and X’-Y’ are referred to the rectangular 

/ and east vector and are directed to 
X 



x /  

coordinate system at the tracking station. The rectangular 
components of these unit vectors along x, y, and x are 

cos & cos (e + A) 
(384) 

The geodetic latitude +,, of the tracking station is com- 
puted from 

90 = 9 + (98 - 9)  (385) 
where 

4 = solve-for geocentric latitude of tracking station, 
re€erred to true pole and equator 

and @,, - 4)  is computed from 

B = eccentricity of reference spheroid 

r = solve-for geocen.tric radius of tracking station 

Ue = mean equatorial radius of earth = 6,378.160 km 

The eccentricity e can be computed from the flattening f ,  
using a nominal value of 1/298.25, as 

e2 = 2f - f" (387) 

3. Azimuth and elevation. Figure 7 shows the unit veo 
coordinate system centered at the track- 

ing station S. The angles u and y are the azimuth and 
elevation, respectively. The reference coordinate system 
may be rotated through the smaII angles 7 about N, E 

about E, and g about Z. Section X-C gives corrections to 
the computed values of u and y as a function of the solve- 
for rotations 7, E, and 5'. 

The unit vectors 6 and (normal to L) in the directions 
of increasing y and U, respectively, are used in computing 
the partial derivatives. The components of 5 and along 
N, E, and Z are 

,., 
A =  

-sinycoso 

-sin y sin u 

cos Y [ ] =  [ -sinu c;u] 

(389) 

N 
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Using Eqs. (382,-384), the rectangular components of referred to the true earth equator and equinox are 

sinasin+,cos(O + X) - cosUsin(0 + A )  

sinusin+,sin(6 + A )  + cosucos(B + A )  

-sin u cos (bg 

(391) 

4. The 21: and Y angles for MSFN stations with 6-m (20-fi) antenna. Figure 8 shows the angles X and Y referred to the 
NEZ reference coordinate system at the tracking station. 

The unit vectors D' and A' (normal to k) are in the directions of increasing Y and X, respectively. The components 
of D' and A' along the , E, and Z axes are 

' = [ z] = [ -sinYsinx] cos Y 

-sinY cosx 

A'=[:]=[ -sinx c:X] 

(392) 

(393) 

Using Eqs. (382-384), the rectangular components of and A' referred to the true earth equator and equinox are 

~ i n Y [ ~ i n x ~ i n ( e + x ) - ~ ~ ~ x ~ ~ ~ + , ~ ~ ~ ( e  + A ) ]  -cosYsin+,cos(d + A )  
-sinY [sinXcos(e + A )  + c o s x ~ ~ + , s i n ( e  + A ) ]  - cosYsin+,sin(e + A )  ] (394) 

cos Y cos +, - sin Y cos X sin +, 
- ~ i n x c o ~ + , ~ s ( e  + A )  - cosxsin(e + A) 
-sinXcos+,sin(d + A )  + cosXcos(B + A )  

-sinxsin+, 
(395) 

5. an tations With 26-m (85 antenna. Figure 9 shows the angles X' and Y' referred to 
the co at the tracking stati 

The unit vectors in the directions of increasing Y' and X', respectively. The components 

D; sin Y' sin X' 
''=[I&[ -sinY'cosX' COSY' ] (396) 



The rectangular components of ’ referred to the true earth equator and equinox are 

The computation of each pair of angular observables 
requires the following quantities from the light time solu- 
tion (see Section VI): 

r3, i., = heliocentric position and velocity vectors of 
tracking station at reception time t3, with 
rectangular components referred to mean 
earth equator and equinox of 1950.0 

rE = heliocentric position vector of earth at re- 
ception time t3, with rectangular compo- 
nents referred to mean earth equator and 
equinox of 1950.0 

r, = heliocentric position vector of spacecraft at 
transmission time t,, with rectangular com- 
ponents referred to mean earth equator and 
equinox of 1950.0 

t 3  (ET), 
t3 (UT1) = ET and UT1 values of reception time t3. 

The true sidereal time 0 at the reception time t3 is com- 
puted from Eq. (269) and associated equations, using 
t3 (UTI) and t3 (ET). 

X-Y, and X’-Y’) and will be computed by a second pro- 
cedure for optical right ascension-declination obtained 
from the reduction of photographic plates. 

a. Directly observed angles. The unit vector E is 
directed from the heliocentric position of the tracking 
station at the reception time t3 to the heliocentric position 
of the spacecraft (a free spacecraft or a station on some 
celestial body other than the earth) at its transmission 
time t,. This vector, with rectangular components referred 
to the mean earth equator and equinox of 1950.0, is de- 
noted as L50. It is computed from 

where 

rZ3 = r3 - r, (401) 

z 

5 

1. Computation of unit vector L. The unit vector E 
will be computed by one procedure for the directly ob- 
served angles (hour angle-declination, azimuth-elevation, 

. x  les 

c 

E 
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The unit vector L50 is directed from the station to the 
spacecraft in the heliocentric space-time frame of refer- 
ence. In the observer's topocentric space-time frame of 
reference, the direction to the spacecraft is 
where AL50 can be derived from the Lorentz transforma- 
tion of special relativity. The following first-order expres- 

50 is the same as that due to the stellar 
aberration of light, the change in the direction of incom- 
ing light due to the heliocentric motion of the tracking 
station: 

(403) 

where 

c = speed of light 

The unit vector L with rectangular components referred 
to the true equator and equinox of the reception time t3 is 
denoted as Ltrue. It is given by 

precession matrix, transforming rectangular 
components of a vector referred to the mean 
earth equator and equinox of 1950.0 to com- 
ponents referred to the mean earth equator 
and equinox of t3. 

nutation matrix, transforming rectangular com- 
ponents of a vector referred to the mean earth 
equator and equinox of t3 to components re- 
ferred to the true earth equator and equinox 
of t 3 .  

The A and M matrices are a function of ephemeris time 
and hence are computed from t3 (ET). 

true from Eq. (404) does not account for 
e incoming ray due to atmospheric re- 

fraction, which increases the elevation angle y of the 
incoming ray by &y. Referring to Fig,7, the change in 
L due to atmospheric refraction is Ary 
vector from the observer outward along the incoming ray 
is given by 

This vector has been normalized since the value of the 
vector in the numgrator is slightly greater than unity. In 
order to compute and Ary, the azimuth u and elevation 

y are required. They are obtained f rod  Eqs. (423-425) 
q. (404). Given u and y, the rectangular 
referred to the true earth equator and 
computed from Eq. (390). The refrac- 

tion correction is computed as a function of th 
tion angle y from the formulation of D. Cain ( 
pp. 21-22): 

y < 0.17 rad 

where 

N s  = surface refractivity at tracking station (see Sub- 
sections XII-B-2-a and -b). 

b, = 1.0 - (1.216 X lo5 b3 yrad) 

- (51.0 - 300.0 yrad) (b3)% (408) 

1 
b3 = 103 ( r  - a,) 

pad = elevation angle, rad 

a, = mean equatorial radius of earth = 6378.160 km 

r = geocentric radius to the spacecraft, km 
= llrz - rmll 

b. Optical right ascension and declination. Optical right 
ascension and declination obtained from the reduction 
of photographic plates are referred to the mean or true 
earth equator and equinox of a date t R ,  which generally 
is not equal to the observation time (the reception time 
t3). The unit vector L with rectangular components re- 
ferred to the mean or true equator and equinox of t B  is 
computed from 

or 

L o p t  (true) = 

(412) 
where A (tR) and N (tR) are the precession and nutation 
matrices evaluated at the reference time t R .  The vector 



- 
is computed from Eq. 

u and y computed from 

The right ascension and declination of a star obtained 
from the reduction of photographic plates are free from 
the effects of stellar aberration and refraction at least to 
first order. If a second-order plate reduction method is 
used, the effects of refraction can be removed completely. 

owever, the right ascension and declination of a space- 
craft obtained from the reduction of photographic plates 
axe affected to a small extent by refraction because the 
spacecraft is much nearer than the background stars. The 
expression for the correction to the computed elevation 
angle ~ , y  due to this effect has been derived by D. Cain 
(Ref. 50, p. 22). However, the sign of the correction is 
wrong and should be negative. The corrected expression is 

,where 

0.00211 
b4 = (yrad + 0.0598)2.42 

(414) 

(415) 

b, = (bt - a$ cos2 y)" - a, sin y (416) 

b6 = a, + 51.2064 (417) 

The right ascension and declination of a spacecraft or star 
obtained from the reduction of photographic plates are 
not affected by stellar aberration; hence, a,,, does not 
appear in Eqs. (411-413). 

2. Computation of observed angles. The directly ob- 
served angles are computed from L given by Eq. (405). 
Optical right ascension and declination are computed 
from L given by Eq. (411) or (412). In either case, the 
rectangular earth equatorial components of L are denoted 
below by 

a. Right ascension and declination. eferring to Fig. 5, 
compute declination 6 from26 

sin 6 = L,, -90 deg 4 6 . 4  90 deg (419) 

20The angular observables are measured in degrees. 
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and compute right ascension from 

Odeg L a:& 360 deg (420) 
L, sina = - cos6 

L, 
cos 6 Cosa:=- 

b. Hour angle and declination. Compute a: and 6 from 
Eqs. (419-421). Compute HA from (see Fig. 5) 

HA=(e+.X)-a ,  OdegLHAL36Odeg (422) 

where 

8 = true sidereal time at reception time t3 

X = east longitude of tracking station, relative to true 
pole 

c. Azimuth and elevation. Compute the unit vectors 
N, E, and Z for the reception time t3 from Eqs. (38-84). 
Compute the elevation angle y from (see Fig. 7) 

and compute the azimuth u from 

0 deg -L u 4 360 deg (424) 
L * E  

sing = - 
cosy 

L*N 
cos Y 

cos0 = - 

Note that u is indeterminate for y = 90deg. 

d. X and Y angles for MSFN stations with a 9-m (30-ft) 
antenna. Referring to Fig. 8, compute the angle Y from 

and compute the angle X from 

-90 deg . L X  L 90 deg (427) 

Note that X is indeterminate for Y = +90 deg, which can 
occur only when the spacecraft is on the horizon. 

e. X' and Y' angles for MSFN stations with a 26-m an- 
tenna. Referring to Fig. 9, compute the angle Y' from 

sinY' = L-E, -90deg4YY'.L90deg (428) 



and compute the angle X' from 

- 90 deg L X' L 90 deg (429) 

Note that X' is indeterminate for I" = _t90 deg, which 
can occur only when the spacecraft is on the horizon. 

The computed angles may not agree with the observed 
angles because the mathematical representation of the 
orientation of the reference coordinate system at the track- 
ing station differs from the actual orientation of the coor- 
dinate system. The difference in orientation is due to two 
errors: (1) errors in the mathematical model (primarily 
the difference between the actual plumb bob direction 
and the geodetic plumb bob direction computed from a 
reference ellipsoid of revolution), and (2) errors in orien- 
tation of the instrument axes (e.g., alignment of the verti- 
cal axis with the plumb bob direction for the azimuth- 
elevation system). 

Formulas 'are developed for corrections to the computed 
angles as linear functions of the small rotations of the 
computed reference coordinate system about each of its 
three mutually perpendicular axes. 

This type of correction does not apply for right ascen- 
sion and declination obtained from the reduction of photo- 
graphic plates. 

ur angle-declination. Referring to Fig. 5. the 
the rotations are 
and 9' about the 
rection, using the 

right-hand rule. 

The dot products of 

(430) 

LeE = -cosSsinHA (431) 

=sins (432) 

In terms of the rotations, the variations in the unit vec- 
tors are 

(433) 

(434) 

The variation in 6 due to the variation in 
from Eq. (432) as 

(cos6)as = L O A  (436) 

Substituting Eqs. (435), (430), and (431) gives 

AS = ['sin HA + ECOS HA (437) 

From Eq. (430), the variation in HA is given by 

(COS 6 sin HA) AHA = - L e a  - (sin 6 cos HA) AS 

(438) 

Substituting Eqs. (433), (431), (432), and (437) and simpli- 
fying gives 

AHA = 9' + tan 6 ( E  sin HA - [' COS HA) (439) 

This same equation may be obtained by differentiating 
Eq. (431). 

The meridian plane is determined by the vector P to 
the pole and by the plumb bob line. If the plumb bob is 
displaced to the west through the angle d,, the meridian 
plane is displaced to the east through the angle 

If 8," is known, this equation provides an a priori estimate 
of 9'. 

2. Azimuth-elevation. Referring to Fig. 7, the reference 
coordinate system is and the rotations are 9 about 

The variations in the unit vectors due to the rotations 
are 

The variations in E :vation y and azimul u due to the 
variations in the unit vectors are obtained from Eqs. (423- 
425). The results are 

7 7 



- 
T 3, 50 (444) -= Ao = 5 - tany(7cosu + Esino) 

ar, rZ3 COS 

ax2 r23 

_ _  ax 4: 

3. 
nate 

and Fig. 8, 

. Referring to Fig. 8, the reference coordi- 
rotations are the same as for the azimuth- 

elevation system. Using Eqs. (426), (427), (U), and (441), 

-- 
A Y =  - -s~hx f EWSX (445) 3r2 T,~COSY 

’dr, r23 

ax’ AZT 
ar2 T23cosY’ 

Ax = -9 + tanY (esinX + CcosX) (W 

ordinate system and rotations are also used for the X’Y’ 
4. Angles X’, F. “he azimuth-elevation reference co- 

system. Using Eqs. (428), (429), (M), and (441), and 
-= 

(447) 

Ax’= -c+tanY’(bcosX’- ?,7SinX’) (48 )  For any of these angles, 

erivatives of Angular 
Respect to Heliocentric 1950.0 Position Vectors 
of Spacecraft and Tracking Station 

This section gives the partial derivatives of each angular 
observable with respect to the rectangular components of 
the heliocentric position vectors of the spacecraft and 
tracking station, referred to the mean equator and equi- 
nox of 1950.0. These subpartial derivatives will be used 
in Section XIV to form the partial derivative of each 
angular observable with respect to the total parameter 
vector q. 

The partial derivatives of the observed angles with 
respect to r,, obtained from an examination of Figs. 5 
and 7-9 are given below. In these expressions, a sub- 
script 50 after a unit vector indicates that the rectangular 
components of the vector are referred to the mean earth 
equator and equinox of 1950.0. 

For the directly obsezed- angles, compute D , A  from 
Eqs. (380) and (381), D , A  from Eqs. (390) and (391), 
D’, A’ from Eqs. (394) and (395), and D”, A” from Eqs. 
(398) and (399). These unit vectors all have rectangular 
components referred to the true equator and equinox of 
the reception time t3. Transform the rectangular compo- 
nents of each ol these vectors to the mean equator and 
equinox of 1950.0 as 

For optical right ascension and declination, compute 
from Eqs. (380) and (381). For angles referred to the true 
equator and equinox the date t R ,  transform the rectan- 
gular components of and A to the mean earth equator 
and equinox of 1950.0 as 

- ( A050 , &50 , ) (449) For angles referred to the mean equator and equinox of 
the date tR, 

- -  
rZ3 cos 6 rZ3 cos 6 rZ3 cos 6 

ar2 r23 
(450) 

Note that the partial derivatives are computed using 
angles affected by refraction. Strictly, these angles should 
not include refraction, and the refraction correction should 



also be differentiated with respect to the position of the 
spacecraft. Because of the approximations made, the par- 
tial derivatives of the angular observables with respect to 
the positions of the spacecraft and tracking station are 
accurate to roughly five sigdicant figures for 
near the zenith and three sigdcant figures for 
toward the horizon. These figures apply for directly ob- 
served angles. For optical angles obtained from the reduc- 
tion of photographic plates, the secondary refraction 
correction and hence the error in the partial derivatives 
approaches zero with increasing range. 

ler 

This section gives the formulation for the computation 
of 1-way, 2-way, and 3-way doppler observables from 
the difference of two range observables whose reception 
times are the end and start of the count interval T,. The 
computation of accurate doppler observables with this 
differenced-range doppler formulation requires a com- 
puter with a large word length. On the Univac 1108 
computer with a double-precision word length of 60 bits 
or 18 decimal digits, the formulation for the computation 
of 2-way and 3-way differenced-range doppler is accurate 
to about m/s for all count times above a lower limit 
which varies from about 0.1 to 1.5 s. This formulation 
was made possible by the derivation (in Appendix B) of 
an accurate expression (Eq. 65) for the transformation 
from coordinate time (ephemeris time ET) to proper time 
on earth (atomic time Al). The computation of accurate 
1-way differenced-range doppler requires a similar expres- 
sion for ET minus A1 obtained from an atomic clock on 
board the spacecraft. This expression does not exist and 
the resulting 1-way formulation is accurate to only about 

m/s for count times ranging from about 10 s when 
the spacecraft passes by a planet or the moon at very 
low altitude to about 1,000 s when the spacecraft is in 
heliocentric cruise. 

The primary advantage of the differenced-range dop- 
pler formulation is that there is no upper limit to the count 
time for 2-way or 3-way doppler, whereas count times 
used with the current Taylor series formulation (Sec- 
tion VIII) are limited due to truncation of the fourth 
and higher even derivatives of the doppler frequency shift 
in the Taylor series expansion. For an accuracy of 
m/s, the maximum allowable count time for the Taylor 
series formulation varies from 1-10 s when the spacecraft 
passes by a planet or the moon at very low altitude to 
about 1,000 s when the spacecraft is in heliocentric cruise. 

The computation of doppler observables to an accuracy 
of m/s with the Taylor series formulation thus re- 
quires the computation of 43 observables for a 1/2-day 
pass of the spacecraft over a tracking station during helio- 
centric cruise. However, preliminary considerations indi- 
cate that the information content of a pass of tracking 
data during heliocentric cruise is not significantly reduced 
if the count time is increased to about 8,640 s, which 
requires the computation of only five observables. The 
use of the differenced-range doppler formulation will 
allow these very large count times to be used and greatly 
reduce the number of observables which must be com- 
puted and hence the running time of the DPODP. Fur- 
thermore, the formulation is much simpler, which further 
reduces the running time and also decreases the size of 
the program. The differenced-range doppler formulation 
will be added to the Univac 1108 version of the DPODP, 
either as a replacement for or alternative option to the 
existing Taylor series formulation. 

Reference 51 demonstrates the m/s accuracy of 
2-way differenced-range doppler. However, in order to 
obtain this accuracy for 2-way and also for 3-way doppler, 
a number of changes to the range observable formulation 
of Section IX are required. The primary analytical change 
is the use of the more accurate expression (Eq. 65) for the 
relativistic transformation from coordinate time (ephem- 
eris time ET) to proper time (atomic time Al). Currently, 
only the first four terms of this equation are used. The 
increase in numerical precision from the 16 decimal digits 
of the IBM 7094 to the 18 decimal digits of the Univac 
1108 is required; also, the precision of representation of 
time must be increased from double- to triple-precision 
seconds past January 1, 1950,0h. Alternatively, time could 
be represented as one single-precision word (8-decimal 
digits) for the Julian day number plus one double- 
precision word (18-decimal digits) for seconds past the 
beginning of the day. It is also recommended that the 
current type-50 n-body ephemeris be replaced by the 
more accurate type-66 ephemeris or the equivalent. 

The expressions for the computation d 1-way, 2-way, 
and 3-way doppler observables from differenced 1-way, 
2-way, and 3-way range observables are derived in Sec- 
tion XI-B. Section XI-C gives the numerical and analytical 
modifications to the 2-way range observable formulation 
of Section IX required for the computation of %way and 
3-way differenced-range doppler. Also, the formulation 
is modified for an approximate computation of the change 
in 1-way range during the count time, used to compute 
1-way differenced-range doppler. 
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t l ,  (ST) = end of transmission interval T', 

tl, (ST) = start of transmission interval T', 
The doppler observables are defined by Eq. (288), 

repeated here: Also, define 2-way range p2 and 3-way range p3 as 

1 t l , ( m ) + ( 1 / Z ) T c  pz t 3  (ST) - tl (ST) 2 4  3 (469) 
F=-/ (f - fbias) d t 3  (ST) (462) 

tam(8T)-(1/2)Tc where 

The notation is that of Section VIII. Equations (284-286) 
give the expressions for f - fbias for 1-way doppler (Fl), 
%way doppler (F2), and 3-way doppler (F3), respectively. 
Substituting these equations into Eq. (462) gives 

tl (s ) = transmission time of the crest of a wave at 
the transmitting station (station time at trans- 
mitter ) 

t3 (ST) = reception time of same crest at receiving sta- 
tion (station time at receiver) 

F1= - czfs/c 1 - 6 2  [.afT, + f T 1  ( t 2  - t o )  + f T z  ( t Z  - to)'] 
Then, the range p with reception time equal to the end Tc 

(463) of T ,  is 

F3= - c 5 f ' Z ( t l )  I 

where 

(465) and the range p with reception time equal to the start of 
TC T ,  is 

pz, = t 3 ,  (ST) - t,, (ST) 2 + 3 (471) 

I = T ,  - T', = 

and - 
(ST) - t 3 8  (ST)] - [tl, (ST) - tl, (ST)] For 2-way or 3-way doppler, f R / f T  is given by Eq. (293) 

2+ 3 (472) - Pze - Pz8 

t3,(ST)+(1/2)Tc 
I =  [ 1 - -1 dt3 (ST) (467) For 1-way doppler, f R / f T  is given by Eq. (303) and 

The count time T ,  is an interval of reception time; the t.3, ( S T ) + ( 1 / 2 ) T o  

] dt, (ST) (473) corresponding transmission interval is denoted by TC and I = d t z  (UTG) 
has midpoint tIm. Thus, [' - dt, (ST) 

, n ( s T ) - ( 1 / 2 ) T c  

The epochs corresponding to the start and end of the 
reception and transmission intervals T ,  and Yc are de- 
noted as 

t3e (ST) = end of reception interval T, 

t,, (ST) = start of reception interval T ,  

The transmission interval at the spacecraft in UTG sec- 
onds (9,192,631,770 (1 - S) cycles2' of an imaginary 
cesium atomic clock at the spacecraft) is denoted by TE 
and has midpoint tzm. Thus, 

2 7 S e e  Subsection 111-A-4. 



The epochs corresponding to the start and end of the 
transmission interval TE are denoted as 

tze (UTC) = end of transmission interval TE 

t,, (UTC) = start of transmission interval TE 

Also, define 1-way range pl as 

Then, 

(476) 

(477) 

p l e  = t 3 e  (ST) - t,, (UTC) 

= t 3 ,  (ST) - t z ,  (UTC) 

Thus, 

I = T, - TE = (ST) - t3, (ST)] 
- [he (UTC) - t z ,  (UTG)] 

(478) - - Ple - P l s  

Substituting Eq. (478) into Eq. (463), and Eq. (472) 
evaluated with pz and p3 into Eqs. (464) and (465), respec- 
tively, gives 

In the computation of differenced-range doppler, the 
epochs at the end and start of the count interval T, are 
converted from ST to ET and used to start the light time 
solutions for pe and ps. This conversion is accomplished 
using the general time transformation subroutine of the 

. This subroutine evaluates (ET- Al )  from 
Eq. (93), which consists of the fist three terms of the 
complete expression for ET-  A1 (Eq. 65). The con- 
verted epochs t3,(E ) and t3,(ET) are in error by 
- 6 (ET - Al)",, and -8 (ET - Al)t3s, respectively, where 

6 (ET - A l )  = 

The resulting error in differenced-range doppler (DRD) 
expressed in 1-way meters/second is 

1 8 (ET - A1)g3, - S (ET - Al)t3e 
T ,  

SDRDZ/!l 
L -I 

where i is the 1-way tracking-station-to-spacecraft range- 
rate evaluated at the midpoint of the count interval and 
p is the time derivative of ;, assumed constant over T,. .. . 

The second term of Eq. (482) has been discussed in 
Section 111. It represents the time derivative of the ob- 
servable multiplied by the error in the time at which it 
is evaluated. The largest terms of 6 (ET - Al) are the 
2-ps daily term and the 1.7-ps monthly term. Furthermore, 
there are unknown long-period variations in (ET - Al) 
of the same approximate magnitude due to periodic vari- 
ations in the heliocentric orbital elements of the earth- 
moon barycenter arising from perturbations from the 
other planets. Hence, Eq. (93) for (ET - A l )  used in the 
general time transformation subroutine may be in error 
by as much as s. For a spacecraft acceleration of 
25 m/s2 in the vicinity of Jupiter, the resulting error in 
doppler observables can be as large as 2.5 X m/s. 

The first term of Eq. (482) is due primarily to neglect- 
ing the 2-ps daily term of (ET - Al)  in the general time 
transformation subroutine and has a typical value of 
about m/s. It can be eliminated in favor of a much 
smaller error by a simple modification of T ,  used in 
Eqs. (479-481). If the epochs t3e(ET) and t3,(ET), ob- 
tained using Eq. (93), are transformed back to ST using 
Eq. (65) and subtracted, the result is a computed count 
time given by 

T, (computed) = T, + S (ET - Al)",, - 6 (ET - Al)",, 

(483) 

The computation of differenced-range doppler using 
T,(computed) rather than T, in Eqs. (479-481) elimi- 

the last seven terms of Eq. (65). That is, 
S (ET - Al)  consists of the terms of 
(ET - A l )  not included in the general 
time transformation subroutine of the 
BPODP. 

nates the error given by the first term of Eq. (482). How- 
ever, the computed observable is based upon a count time 
of T, (computed) rather than the correct value of T,. For- 
tunately, doppler observables vary slowly with T, and 
the maximum error is about le7 m/s, which is negligible. 



Thus, diff erenced-range doppler observables are com- 
puted from 

(485) 

where T ,  (computed) is given by Eq. (483). The formula- 
tion for computing the 1-way, 2-way, and 3-way range 
observables at the end and start of the count interval is 
given in Section XI-C. As in the Taylor series formulation, 
the variation in f s I c  over the transmission interval TE for 
1-way doppler is ignored. It is computed from Eq. (277) 
using tz equal to the average of tZe (UTC) and t2, (UTC) 
obtained from the light time solutions for ple and pl,, re- 
spectively. This value of tz is also used in the second term 
of Eq. (484). As in Section VIII, the doppler formulation 
is valid only when fq(tl)  is constant over TE and f q  (t3), 
K ,  (t3), and Ks (t3) are constant over T,. Also, if TE over- 
laps T,, fq(t3) must equal fq(tl). It is recalled that the 
doppler observable which the data editing program passes 
on to the orbit determination program is given by 
Eq. (287), which uses fbias computed from fq( t l ) ,  fq(t3), 
Kl (t3), and Ks (t3) using Eqs. (281-283). 

differenced-range doppler is a maximum of 3 X m 
divided by the count time (Ref. 51). However, the 
differenced-range doppler formulation will be added to 
the Univac 1108 version of the DPODP, which has a 
double-precision word length of 18 decimal digits (60 
bits). The increase in the word length from 54 to 60 bits 
increases the precision of representation of time from 
0.6 X lo-? s to s in the interval 1967-1984. This should 
decrease the time truncation error of difFerenced-range 
doppler to about 5 X m divided by the count time. 

For the desired accuracy of m/s, the minimum 
allowable count time is 5 s. Since count times as low as 
0.1 s are sometimes used, it is recommended that the rep- 
resentation of time be changed from double-precision to 
triple-precision seconds past January 1,1950, Oh or double- 
precision seconds past midnight with one single-precision 
word used for the Julian day number. This will, for all 
practical purposes, completely eliminate the time trun- 
cation error, and allow count times as low as 0.1 s to be 
used. 

In order to utilize the increased precision for represen- 
tation of time, the accuracy of the light time solution for 
the epochs of participation of the transmitter and the 
spacecraft must be increased from the current value of 
lo-' s to s. For the maximum conceivable spacecraft 
velocity of 1,000 km/s, the maximum error in computed 
range due to an error of s in the epoch of participa- 
tion of the spacecraft is le6 m. The maximum correspond- 
ing error in differenced-range doppler is 2 X 10-6m/T,, 
allowing an accuracy of m/s to be obtained for all 
count times above 0.2 s. 

odifie 
On the forthcoming Grand Tour missions to the outer 

planets, the tracking-s tation-to-spacecraft range will ap- 
proach the 50-AU radius of the solar system. For ranges 
of 29-57 AU, the computed round-trip range (p2 or p3) of 
57-114 AU will be represented to a preci 
on the 60-bit Univac 1108 computer. 
doppler may be in error by 3 X 10-5m/T, (round-trip) 
or 1.5 X 10-5m/T, (one way), allowing the desired accu- 
racy of m/s to be obtained for all count times above 
1.5 s. For ranges of 3.5-7 AU, the round-trip range of 
4-14 AU is represented to 2 X le6 m, and differenced- 

erical considerations. Each of the computed 
ables used to form differenced-range doppler 

contains random errors due to truncation of time and posi- 
tion beyond the double-precision word length of the com- 
puter being used. 

The range observables computed by the XBM 7094 
version of the DPODP contain a random error of a few 
millimeters due to truncation of time (seconds past 1950) 
beyond 16 decimal digits.28 The corresponding error in - 

range doppler may be in error by as much as 2X le6 m/Tc 
(one way). For the desired accuracy of le5 m/s7 count 
times as low as 0.2 s may be used. 

28Time is represented as double-precision (54 bits on the IBM 7094 
computer) seconds past January 1, 1950,o". From 1967 to 1984, 
the value of the last bit is 0.6 x io-' s. The transmission time, 
reflection time at the spacecraft, and reception time (in ephem- 
eris time) obtained from the light time solution may be in error 
by about this amount. Hence, for a spacecraft range rate of 
30 h / s ,  the error in computed range will be about 30 h / s  x IO6 
mm/km X 0.6 X lO-'s = 1.8 mm. 

The precomputed n-body ephemeris tapes used by the 
DPODP are of the so-called m e 5 0  format. They contain 
modified second and fourth central differences of position 

E 



and velocity. Interpolation is obtained by the fifth-order 
Everett’s formula. Both the velocity interpolation error, 
which affects doppler observables computed from the 
Taylor series formulation, and the differenced position 
interpolation error divided by the count time, which af- 
fects differenced-range doppler, can approach m/s. 
This small error could be eliminated by converting to the 
type-66 n-body ephemeris tape format, which contains the 
full sum and difference array (on acceleration) used to 
generate the ephemeris. The heliocentric velocity of the 
spacecraft is affected by errors in interpolation of the 
heliocentric ephemeris of the center of integration for 
the spacecraft trajectory, while errors in interpolation of 
the heliocentric ephemeris of the earth-moon barycenter 
affect the heliocentric velocity of the tracking station. 

Observable is used twice: once as pe for the preceding 
doppler observable and the second time as p8 for the 
succeeding doppler observable. 

a. Two-way range pz and three-way range p,. The 2-way 
range observables of Section IX are computed from 
Eq. (379). Considering this equation and the definition 
(Eq. 469) for 2-way range pz and Sway range p3 used to 
compute differenced-range doppler, it is evident that pz 
and p3 may be computed from Eq. (379) using F = 1 and 
M =  co. 

The 
puted 
t3 (ST) 

The (ET - Al) time transformation in Eq. (379) is eval- 
uated with the general time transformation subroutine of 
the DPODP using Eq. (93), which consists of the first 
three terms Of Eq* (65). (ET - in 
Eq. (379) consists of an approximation of term 4 of Eq. (65) 

rate differenced-range doppler, 6 (ET - Al)  must be com- 
puted from the last seven terms of Eq. (65) so that 
(ET-Al)+S (ET-A1) will equal Eq. (65) for (ET-Al). 
This expression was derived in Appendix B specifically 

doppler. However, it was shown in Section IX that all of 
the terms of Eq. (65) are also required in order to com- 
pute the range observables to the desired accuracy of 
0.1 m. 

2. Formulation. This section gives the modifications to 
the 2-way range observable formulation of Section IX 

pl, 2-way range p2, and 3-way range p3 used in Eqs. (484 
486), respectively, to compute l-way, e-way, and 3-way 
diff erenced-range doppler. 

which are necessary for the computation of l-way range (See Section 11 after Eq* 70). In order to compute accu- 

range observable pi,  (where i = 1, 2, or 3) is corn- for the Purpose of computing XXXELte differenced-range 
from a light time solution with reception be 
equal to 

(487) 
1 

t 3  (ST) = t,, (ST) + y T, 
I where In the computation of p3 from Eq. (379), evaluation of 

S (ET - Al) at tl and t ,  is accomplished using the longi- 
tude and spin axis distance of the transmitting and re- 
ceiving stations, respectively. Similarly, (UTC - ST) is 
evaluated at tl and t3 using coefficients which apply for the 
transmitter and receiver, respectively. Since the constant 
range bias R, cannot affect differenced-range doppler, it 
is set equal to zero in the computation of p2 or p3. 

t3, (ST) = “time tag” for doppler observable 

= midpoint of count interval T,, station time 

Similarly, the range observable pi,  (where i = 1, 2, or 3) 
is computed from a light time solution with reception 
time equal to 

1 

The l-way range observables are based upon a l-leg 
light time solution, and the 2-way and 3-way range ob- 
servables are based upon a 2-leg light time solution. As in- 
dicated in Subsection XI-C-1, the iteration for the epochs 
of participation for the spacecraft and transmitter must 
be continued until the indicated correction to the epoch 
is less than 10-l2 s. Aside from this change, the light time 
solution for each range observable is identical to that 
described in Section VI. 

Since the count intervals for successive doppler observ- 
ables are contiguous, each light time solution and range 

The range observables of Section IX represent the time 
for a signal to travel from the transmitter to the receiver 
at the group velocity (A c).  On the other hand, the range 
observables used to compute differenced-range doppler 
represent the time for the crest of a wave to travel from 
the transmitter to the receiver at the phase velocity (h c). 
In the presence of charged particles, the departure of 
each of these velocities from c is equal in magnitude but 
opposite in sign. Hence the ionospheric range corrections 
Arp(tl) and AIp(t3) in Eq. (379) for true range observ- 
ables will be equal in magnitude but opposite in sign to 
those for range observables used to compute differenced- 
range doppler. The corrections for the true range observ- 
ables will be positive. 



Each periodic relativity term of (ET - Al) is evaluated 
at t3e and tle in the computation of pze or p3e from 
Eq. (379) and also at t3s and tIs in the computation of 
p2, or p3s from Eq. (379). The effect of these four values 
of a periodic term of (ET - Al) on 2-way differenced- 
range doppler computed from Eq. (485) is 

where 

8; = effect on F2, expressed as 1-way m/s 

M = amplitude of periodic term of (ET - Al), s 

c = speed of light, m/s 

T, = count time, s 

P = period of periodic term of (ET - Al), s 

p = one-way range to spacecraft, m 

The periodic terms of (ET - Al)  have periods of 1 day, 
1 month, and 1 year. Since the minimum value of P is 
1 day and the maximum possible value of Tc is normally 
about 1/2 day, the argument of the first sine term of 
Eq. (489) will rarely exceed ~ / 2 .  Hence, a rough approxi- 
mation for this term is its small angle approximation, 
which gives 

(490) 

For a daily term of (ET - Al) and a count time of 1/2 day, 
the right-hand side of Eq. (490) is 57% greater than that 
of Eq. (489). However, for a count time of about 1/10 day, 
which probably will be used with differenced-range dop- 
pler, the difference between Eqs. (490) and (489) is 
negligible. 

Equation (490) gives the contribution to 2-way 
differenced-range doppler from a daily, monthly, or an- 
nual term of (ET - Al). It also gives the contribution to 
3-way differenced-range doppler from a monthly or an- 
nual term of (ET - Al).  The contribution from a daily 
term is given by 

where 

Ah = east longitude of receiving station minus that of 
transmitting station 

For a daily term of (ET - Al), the argument of the sine 
term of Eq. (490) approaches ~ / 2  as p approaches the 
40-50 AU radius of the solar system. The argument of 
the sine term of Eq. (491) can also approach ~ / 2 .  How- 
ever, the range at which this occurs depends upon the 
separation in longitude A i  of the receiving and transmit- 
ting stations. The maximum effect of a diurnal term of 
(ET - Al)  on %way or 3-way differenced-range doppler 
is thus 

(492) 

The maximum effect from the 2-ps daily term of ET - A1 
(term 4 of Eq. 65) is 0.05 m/s. 

For a monthly or annual term of (ET - Al), the argu- 
ment of the sine term in Eq. (490) is very small. Hence, 
this term may be replaced by its small angle approxima- 
tion, and Eq. (490) becomes 

Si < M (+y p (493) 

For a range of 50 AU, the maximum effect of the monthly 
term of Eq. (65) (term 9) on 2-way or 3-way differenced- 
range doppler is about 7.5 X m/s; the annual term 
(term 3) contributes about 5 X 10-4m/s. The contribu- 
tion from the 2-ps daily term of Eq. (65), computed from 
Eq. (493), is 0.08 m/s, whereas the actual upper limit 
computed from Eq. (492) is 0.05 m/s. The ratio 0.05/0.08 
is (sin x ) / x  evaluated at x = ~ / 2 .  For a range of 10 AU 
or less, Eq. (493) is a fairly accurate representation of the 
contribution from a daily term of (ET - A l )  to 2-way 
diff erenced-range doppler. 

In Appendix B, Eq. (493) is used to determine which 
terms should be retained in the final expression for 
ET - A1 (Eq. 65). All terms affecting 2-way differenced- 
range doppler by more than 2 X lo-? m/s/AU of range to 
the spacecraft are retained. Several terms of this magni- 
tude are neglected, and the resulting error in differenced- 
range doppler is no more than mjs/AU or 5 X lCb5 
m/s at 50 AU (using Eq. 493). 

b. One-way range pl. From the definition (Eq. 475) for 
1-way range pl, it may be obtained from Eq. (379) (used 
to compute the range observables of Section IX) by re- 
moving the terms associated with the up leg of the light 
path, evaluating the time transformations with subscript 



tl at the spacecraft transmission time t2, deleting the re- 
sulting term (UTC - ST)t2, and by setting R, = 0, F = 1, 
and M = 00. The result is 

- (ET - Al)t3 + (ET - Al)t, 
- 6 (ET - Al)t, 

-(A1 - UTC)t3 + (A1 - U T Q ,  
- (UTC - ST)t, 

(494) 
+ AAP (t3) + ATP (t3) AIP (t3) 

103~ 

The (ET- Al)  time transformation at the reception 
time ts, i.e., (ET - Al)t, + 6 (ET - Al)t3, relates A1 time 
at the tracking station to ET. It is evaluated with Eq. (65), 
which applies for A1 time derived from any fixed atomic 
clock on earth. However, an expression is not available 
for evaluating (ET - Al)t2, which relates A1 time ob- 
tained from an atomic clock on board the spacecraft 
(9,192,631,770 cycles from a cesium atomic clock equals 
one A1 second) to ET. The differential equation relating 
these two time scales is Eq. (64). With a slight change 
in notation, 

dAl  +s/o - $E -=I-  
dET c2 

(495) 

where 

+s/o = Newtonian potential at spacecraft 

&/a = heliocentric velocity of spacecraft 

I& = average value of Newtonian potential at a fixed 

if = average value of square of heliocentric velocity 

It would be extremely difficult to integrate Eq. (495) to 
obtain an expression for ET - A1 obtained from the 
spacecraft atomic clock which would be valid for the tra- 
jectory of any spacecraft. From Eq. (64), the average rate 
of an A1 clock on earth is equal to the rate of an ET 
clock (if Afeesium = 0). However, from Eq. (495), the rate 
of an A1 clock on board a spacecraft will be sigdicantly 
different from the rate of an ET clock if the heliocentric 
distance and velocity of the spacecraft are significantly 
different from 1 AU and 30 km/s, respectively. Under 

point on earth 

of a fixed point on earth 

- 

these conditions, the term (ET - Al)t, e of ple will M e r  
significantly from the term (ET - Al)", of pls. The re- 
mainder of this section gives an approximate formulation 
for computing the difference between these two terms 
and also the range change ple - plg used in Eq. (484) for 
1-way differenced-range doppler. 

Define a modified 1-way range p: as 

It is computed from Eq. (494) for pl with the term 
(ET - Al)t, omitted. Then, 

pie - pi, = de - PT, + (ET - A1)tze - (ET - Al)tz8 

(497) 
or 

The last two terms represent the transmission interval 
T', at the spacecraft in the ET and A1 time scales, respec- 
tively. The last term is evaluated as the product of the 
next-to-last term and an approximation to the average 
value of dAl/dET from Eq. (495) over Ti. The light time 
solutions for p:, and p:g allow the computation of the 
Newtonian potential at the spacecraft and the square 
of the heliocentric velocity of the spacecraft at the 
epochs t2, and t2,. The potential +s/c is computed from 
Eq. (338) as indicated after that equation. Assuming a 
linear variation in these quantities over T',,their average 
values are 

(499) 

Substituting these quantities into Eq. (495) gives the ap- 
proximation to the average value of dAl/dET over T',. 

T as indicated above to evaluate the last 
term of Eq. (498) gives 

7 7 



Substituting Eq. (495) gives 

Since the mean distance of an inner planet from the earth is about 1 AU and the mean distance of an outer planet 
from the earth is approximately equal to the semi-major axis of its heliocentric orbit, the average value of (PB is given 
approximately by 

where 

Ps, W e ,  P.v; &?!a, PJ, 
psa, pu, ~ L N ,  p ~ l ,  pE = gravitational constants for the sun, 

Mercury, Venus, Mars, Jupiter, 
Saturn, Uranus, Neptune, the 
moon, and the earth, respectively, 
km3/s2: 

ps = 1,327.1250 X 10' 

p.ne = 0.0002 X 10' 

pv = 0.0032 X 10' 

para = 0,0004 X 10' 

pj = 1.267 X 10' 

p,ya = 0.349 X 10' 

pu = 0.058 X 10' 

p N  = 0.069 x 10' 

pill = 4,902.78 

p~ = 398,601.2 

A B  = the number of kilometers per astronomical 
unit AU 

= 149,597,900 km 

r = geocentric radius of tracking station, km 

In Eq. (503), the gravitational constant of each outer 
planet is divided by the semimajor axis of its heliocentric 
orbit expressed in AU, and the gravitational constant of 
the moon is divided by the mean distance to the moon. 
Substituting numerical values gives 

(504) 
398601 & z 884.336 + - kmZ/S2 

T 

From Eq. (B-14) and associated equations of Appendix B, 
the average value of 4 is given approximately by 

(505) 
where 

u = distance of tracking station from earth's spin 
axis, km 

8, = mean sidereal rate (see Eq. 273) 

= 0.729,212 X rad/s 

Substituting numerical values gives 
- 
Bg z 887.131 + 0.532 X lo-' uz km2/s2 (506) 

Dividing Eq. (506) by 2 and adding the result to Eq. (504) 
gives 

1 -  398601 
2 t.& + - 4 z 1330.90 + 7 

+ 0.266 X 10-'u2 km2/sz (507) 

This equation is accurate to 0.01 km2/s2, a value that 
affects the spacecraft range rate by 3 X m/s. 

The range change ple - pls used in Eq. (484) to compute 
1-way digerenced-range doppler is given by Eq. (502) 
using p:, and pTS computed from Eq. (494) with the term 
(ET - Al)$, omitted, (psIc from Eq. (499), from 
Eq. (500), and ( A  + Mg)  from Eq. (507). The times 
&,(ET) and tZs(ET) are available from the light time 
solutions for p:, and p;sy respectively. 

The 1-way differenced-range doppler formulation is 
based upon the assumption that + %&31c) varies 
linearly over the transmission interval 2% The resulting 
error in the observable varies directly with the departure 
from linearity (the second derivative of +SIC + W $Io)  and 



with the square of TE. An accuracy of at least m/s can 
be achieved if the count time T, does not exceed approxi- 
mately 10 s when the spacecraft passes by a planet or the 
moon at extremely small altitudes or 1000 s in heliocentric 
cruise. This is approximately the range of count times 
used with the Taylor series formulation of Section VIII. 
The 1-mm/s accuracy for computed 1-way doppler is 
acceptable, since this data type is currently derived from 
a crystal oscillator on board the spacecraft rather than an 
atomic frequency standard. 

Section XII-A defines the correction terms for the range, 
doppler, and angular observables which account for the 
effects of (1) the offset of the tracking point on the moving 
antenna from the earth-fixed “station location” (see Sec- 
tion VU), (2) the troposphere, and (3) the ionosphere. The 
evaluation of these corrections is described in Section 
XII-B. Expressions are given for the antenna and the 
troposphere corrections. The general procedure for ob- 
taining the ionosphere corrections is summari~ed.~~ 

ange obseruables. The range observables (see Sec- 
tion IX) are computed from Eq. (379). The quantity in 
braces represents the time for the signal (ranging code) 
to travel from the tracking station to the spacecraft and 
return, in seconds of station time. In the presence of 
charged particles, this signal travels at the group velocity 
(<c) .  The range corrections Aap, ATP, and  AI^ in meters 
divided by 103c (where c is the speed of light in h / s )  
represent the time delay in seconds due to the antenna 
offset, the troposphere, and the ionosphere, respectively. 
Each type of correction Aip has a value dip(t3)  for the 
down leg of the light path and a value &p(t1) for the 
up leg. 

The antenna corrections AAp (tl) and Aap (t3) represent 
the distance along the light path from the “station loca- 
tion” to the actual tracking point on the antenna at the 
transmission time tl and reception time tg,  respectively. 
Addition of these corrections changes the round-trip light 
time based upon transmission and reception at the station 
location to the light time based upon transmission and 
reception at the actual tracking point on the antenna. 

The troposphere corrections ATP(&) and ATP(&) ac- 
count for the increase in round-trip light time due to the 

29Details are available in Ref. 59. 

reduction in propagation speed below c and the increase 
in path length due to bending when passing through the 
troposphere. 

The ionosphere corrections Arp (tl) and Arp (t3) account 
for the increase in light time due to propagation through 
the charged particles of the ionosphere at the group ve- 
locity, which is less than c. 

oppler obseruables. Equations (308), (309), and 
(310) for 1-way, 2-way, and 3-way doppler observables 
contain a term A which accounts for the effects of antenna 
offsets, the troposphere, and the ionosphere. The expres- 
sion for A is obtained by comparing these equations to the 
equivalent differenced-range doppler formulation of See 
tion XI, which contains correction terms for these effects. 

Differenced-range doppler is computed from the dif- 
ference of two range observables whose reception times 
are the end and start of the count interval T,. Each of 
these range observables represents the time for the crest 
of a wave to travel from the transmitter to the receiver. 
In the presence of charged particles, the propagation 
speed for the crest of a wave is the phase velocity, which 
is greater than c. 

As with the true range observables of Section IX, the 
range corrections A A ~ ,  ATP, and Arp in meters divided by 
103c represent the time delay in seconds due to the an- 
tenna offset, the troposphere, and the ionosphere, respec- 
tively. For 2-way and 3-way range used to compute 2-way 
and 3-way differenced-range doppler, respectively, each 
of these corrections has a value Aip (t3) for the down leg 
of the light path and a value Aip (tl) for the up leg. For 
1-way range used to compute 1-way differenced-range 
doppler, there are no up-leg corrections. 

The antenna and troposphere corrections are the same 
as those described in Subsection XII-A-1 above for the 
true range observables of Section IX. The ionosphere cor- 
rections have the same magnitude as those for true range 
observables but with the opposite sign, because charged 
particles cause the phase velocity to increase above c by 
the same amount that the group velocity decreases be- 
low c. Hence, charged particles of the ionosphere cause 
the range code for true range observables to arrive late 
by [AIp (t3) + Arp (t1)]/(103c) seconds and the crest of a 
wave transmitted and received by the doppler tracking 
equipment to arrive early by the same amount. Thus, the 
ionosphere corrections for range observables used to com- 
pute differenced-range doppler are negative. 
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Comparing the correction terms of the differenced- 
range doppler formulation (Section XI) to the correction 
term A of the Taylor series doppler formulation (Eqs. 308- 
310) gives, for 2-way or 3-way doppler, 

where 

c = speed of light, km/s 

T, = count interval, s 

t3, = epoch at end of reception interval T ,  

t3s = epoch at start of reception interval T, 

t , ,  = epoch at end of transmission interval T’, 

tlg = epoch at start of transmission interval T’, 

and 

Ap ( t )  = sum of range corrections in meters due to the 
antenna offset, the troposphere, and the iono- 
sphere for up leg with transmission time t or 
for down leg with reception time t 

That is, 

As mentioned above, the antenna and troposphere cor- 
rections are the same as those used for a range observ- 
able; the ionosphere correction has the same magnitude 
but the opposite sign (negative in Eqs. 508-509) as that 
used for a range observable. For 1-way doppler, the light 
path consists of a down leg only and 

Given the midpoint t,, of the reception interval T ,  in 
any time scale, the epochs t , ,  and t38 in the same time 
scale are given to sufficient accuracy by 

1 
2 tall = t,, - - T, 

where T ,  is given in seconds of station time (ST). The 
light time solution for the doppler observable has a re- 

ception time t,, and a transmission time t , ,  which is the 
midpoint of the transmission interval a’,. Given tlm in any 
time scale, tle and t , ,  in the same time scale are given 
approximately by 

1 
2 tl, ==: t , ,  + - T, (513) 

(514) 

3. Angular observables. The formulation of Section X 
for computing directly observed angles contains an expres- 
sion for the increase in the elevation angle A,.y of the 
incoming ray due to bending of the ray by the tropo- 
sphere. Specihally, Ary is the elevation angle of the 
incoming ray minus the elevation angle of the straight 
line path from the tracking station to the spacecraft. 

B. Evaluation of One-beg Range Corrections 

This section gives the formulation for computation of 
corrections to the 1-way range from the tracking station 
to the spacecraft due to (1) the offset of the tracking point 
on the antenna from the station location, AAP; (2) the 
troposphere, ATp; and (3) the ionosphere, Alp. As de- 
scibed in Subsection XII-A-l, the range observable for- 
mulation includes these corrections for the up and down 
legs of the light path. From Subsection XII-A-2, the 
doppler observable formulation includes these corrections 
for the up and down legs of the light paths whose recep- 
tion times are the end and start of the reception interval T,.  

1. Antenna correction. The antennas at the tracking 
stations of the DSN, MSFN, and AFETR have four dif- 
ferent types of mounts: (1) hour angle and declination 
(HA-dec); (2) azimuth and elevation (az-el); (3) X and Y 
angles (MSFN); and (4) X’ and Y’ angles (MSFN). These 
angles are defined in Section X, Figs. 5-9. For the 26m 
(85-ft) HA-dec, az-el, and X’-Y’ antennas, the two mu- 
tually perpendicular axes do not intersect. The offset be- 
tween the two axes (the perpendicular distance between 
them) is denoted by b and ranges from about 1 to 7 m. 
The axis which has a fixed position relative to the earth 
will be denoted as the primary axis (the HA, az, or X‘ 
axis). Due to the offset b between the two axes, rotation 
of the antenna about the primary axis causes the sec- 
ondary axis to move relative to the earth. 

10 shows the two mutually perpendicular axes 
-dec, az-el, or X’-Y’ antenna. The primary axis of 



ANTENNA- / 

PRIMARY AXIS 

STATION LOCATION 

(HA, az, or X’) is in the plane of the paper, and the sec- 
ondary axis (dec, el, or Y’) is normal to it. The offset be- 
tween the two axes is b. The positions of the station 
location and spacecraft are indicated. The secondary angle 
(dec, el, or Y’) is indicated by 8. 

Each range tracking system is calibrated so that the 
tracking point lies on the secondary (moving) axis. That 
is, the calibrated range observable obtained from the 
tracking station corresponds to a 1-way range p^ mea- 
sured from the secondary axis to the spacecraft. How- 
ever, the computed range observable is based upon the 
1-way range p (i.e.,rlz or rZ3 of Eq. 379) measured from 
a specific point on the antenna which is fixed relative to 
the earth. This point is called the station location. From 
Section VII, its geocentric position is represented by 
spherical or cylindrical coordinates, which are solve-for 
parameters. For all antennas, the station location is the 
intersection of the primary axis with the plane perpen- 
dicular to it which contains the secondary axis. 

of p“ - p is due to the component of b along the direction 
to the spacecraft. Since b < 10 m and p> lo5 m, 

to an accuracy of better than le3 m and 

From Eq. (508), the doppler observable formulation 
includes antenna corrections for the up and down legs 
of the light paths which have reception times equal to 
the end and start of the reception interval T,. The track- 
ing point for doppler observables is located along the 
spacecraft to secondary axis line at a constant distance r, 
from this axis. Hence, each of the four antenna correc- 
tions is given by Eq. (517) plus the constant r,. However, 
since the round-trip range correction at the beginning of 
the count interval T ,  is subtracted from the correspond- 
ing correction at the end of T,, the effect of r, on A and 
hence on doppler observables is zero. Hence, Eq. (517) 
applies also for doppler observables. 

For the 26-m HA-dec antennas of the DSN, 

where 6 is the observed declination of the spacecraft and 
b = 6.706 m. These antennas are located at DSN Deep 
Space Stations 11, 12, 41, 42, 51, 61, and 62. 

For the 26-m az-el antenna at Deep Space Station 13, 

where y is the observed elevation of the spacecraft and 
b = 0.9144m. 

For the 26-m X’-Y’ antennas of the MSFN, 

From Eq. (379), the computed range for the up or down AAP = -b  COS Y’ (520) 
leg of the light path is rlz or rZ3 (denoted as p in Fig. 10) 
PIUS *AP for that leg. The sum FJ 4- Amp must equal 8. where Y‘ is the observed angle Y’ to the spacecraft and 

b = 1.2192 m. These antennas are located at station MAD 
at Madrid, Spain; DRA at Canberra, Australia; and 0 

ence, the antenna correction AAP is given by 

(515) at Goldstone, California. AAp = 8 - p 

The maximum displacement of the secondary axis from 
the tracking station to spacecraft line is less than 10 m. The 
maximum effect of this transverse displacement upon 
p” - p is about 0.5 X m (for a spacecraft range of 
lo5 m) which is insignificant. Thus, the significant part 

The axis offset b is zero for the 64-m (210-ft) az-el an- 
tenna at Deep Space Station 14, the 9-m (30-ft) X-Y 
antennas of the MSFN, and all antennas of the AFETR 
(station numbers 73-77, 79-84, and 87). Hence there are 
no antenna corrections for these stations. 
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The antenna correction for the up leg of a light path 
is based upon the antenna type of the transmitting station 
and the value of the angle 6, y, or Y' to the spacecraft at 
the transmission time for that leg. Similarly, the antenna 
correction for the down leg of a light path is based upon 
the antenna type of the receiving station and the value 
of 6, y, or Y' at the reception time for that leg. For 3-way 
doppler, the antenna types at the transmitter and receiver 
may be different. 

The maximum transverse displacement of the secon- 
dary axis from the tracking station to spacecraft line is 
less than 10 my which affects directly observed angles by 
less than 20 arc seconds at the minimum spacecraft range 
of 100 km. Since such small ranges are rarely encoun- 
tered and the maximum attainable accuracy for directly 
observed angles is only 7-11 arc seconds, the computed 
angular observables are not corrected for this effect. 

2. Troposphere and ionosphere corrections. Discussed 
below are ray path equations, troposphere corrections, 
and ionosphere corrections. 

a. Ray path equations. The speed of propagation of the 
doppler or ranging signal through the troposphere is 
given by 

C 
0, = - 

n 

where 

c = speed of light in vacuum 

n = index of refraction of troposphere 

From Ref. 52, p. 9, or 

where 

N = refractivity 

given by 

N = N , c B h  (523) 

where 

N o  = refractivity at mean sea level 

B = reciprocal of scale height of troposphere, km-' 

h = altitude above mean sea level, h 

The speed of propagation through the ionosphere is 
given by Eq. (521) using the following index of refraction: 

40.3 
f" n = 1 -t -Ne  

where 

(524) 

N e  = electron density 

= number of electrons/m3 

f = transmitted frequency for up or down leg of light 
path (see Section VIII), Hz 

For range observables, the range code travels at the group 
velocity, which is less than cy and hence the positive sign 
of Eq. (524) applies. For doppler observables, the doppler 
signal (the crest of a wave) travels at the phase velocity, 
which is greater than cy and hence the negative sign 
applies. The electron density vs altitude profile is as- 
sumed to be that of the Chapman model: 

where 

Nmax = maximum value of N e  

= ( h  - hmax)/B 

h = altitude above mean sea level, km 

h,,, = altitude of N,,, 

= scale height of ionosphere, km 

The doppler and ranging signals travel on a curved 
path C through the troposphere and ionosphere. The time 
for the signal to travel between the tracking station and 
spacecraft along C is given by 

where ds is an increment of distance along C. The path C 
follows from the condition that the propagation time T is 
a minimum (Fermat's principle). Since n is a function 
of altitude only, the path is planar and may be described 
by its geocentric radius r and geocentric angle from the 
tracking station. ence Eq. (526) can be written as 



where n is indicated as a function of T.  The differential 
equation of the path which extremizes the integral (Eq. 
527) is the Euler-Eagrange equation of the calculus of 
variations applied to the integrand of Eq. (527). 

The range correction was assumed to be of the form 

(5533) 
A 

' T P  = (sin y + B)U 

The equations for the path C were developed by D. L. 
Cain and A. Liu and were documented by A. Liu in 
Ref. 55. Equation (14) gives the total bending of the path 
and Eqs. (17) and (18) give the range correction. Use of 
the index of refraction given by Eqs. (522) and (523) gives 
the bending and range correction ATP due to the tropo- 

where A, B, and C are constants. Fitting this expression 
to the tabular data above gave 

(529) 
1.8958 m 

ATP = (sin y + 0.06483)1.4 

sphere. Use of n given by Eqs. (524) and (525) gives the 
bending and range correction Arp due to the ionosphere. which was originally obtained by D. L. Cain. 

Given the observed value of the elevation angle, these 
corrections are obtained by a quadrature integration from 
the position of the tracking station to that of the space- 
craft (assumed at i&nite distance from the earth). Equa- 
tions (14), (17), and (18) give computed minus observed 
values of the corrections. However, observed minus com- 
puted corrections are added to the computed values of 
the angular, range, and doppler observables. For this pur- 
pose, the sign of Eq. (14) and of each term of Eq. (17) 
must be changed. Furthermore the factor 1/C, must be 
added to Eq. (18). In the derivation of Eq. (14), the term 
-Eo was omitted in Eqs. (11) and (12). 

Given N o  and B for the troposphere and N,,,, La,, 
and B for the ionosphere in the vicinity of a tracking 
station, Eqs. (14), (17), and (18) of Ref. 55, as modified 
above, give the elevation angle correction used in the com- 
putation of directly observed angles and the tropospheric 
and ionospheric range corrections used in the computa- 
tion of range and doppler observables. 

b. Troposphere corrections. The expression that will be 
given below for the tropospheric range correction ATp 
was obtained by a procedure equivalent to the following: 
For selected values of the observed elevation angle y o  be- 
tween 0 and x/2 rad, the ray tracing formulation described 
in Subsection XII-B-2-a above was used to compute the 
elevation angle correction A.7 and the range correction 
ATP for a spacecraft at infinite distance from the earth. 
Subtraction of Ary  from yo gave the corresponding com- 
puted elevation angle y based upon a straight-line light 
path from the tracking station to the spacecraft. The cor- 
rections were computed using a sea level refractivity N o  
of 340.0 and a scale height of 7 km or inverse scale height 
B of 0.142 km-l. The range corrections ATP were plotted 
vs the computed elevation angle y. 

Let 

Ns = surface refractivity at tracking station 

which ideally could be computed from Eq. (523) using the 
altitude h of the tracking station. The range correction 
ATp varies directly with N s  and since Eq. (529) was ob- 
tained using Ns = 340.0, the general result is 

(530) 
N S  

340.0 
0- 

1.8958 m 
ATP = (sin y + 0.06483)1.4 

Recommended values of Ns for the various, tracking sta- 
tions are given in Ref. 56. 

For elevation angles above 15 deg, where most tracking 
data are taken, the maximum difference between the 
model (Eq. 530) and the tabular data obtained from the 
ray tracing formulation is 1-2 my which is quite large. 
Hence Eq. (528) was fitted to the tabular data for 
15 < y < 90 deg, giving 

N S  
0- 

2.6 m 
sin y + 0.015 340.0 ATP = (5331) 

For y > 15 deg, the maximum difference between this 
model and the tabular ray tracing data is less than W m. 

The models (Eqs. 530 and 531) are based upon an aver- 
age value of the surface refractivity Ns at each tracking 
station and a global average value of the scale height. 
The daily departures of these parameters from the con- 
stant values used are currently not accounted for. The 
resulting errors in ATp from Eq. (530) or (531) are less 
than 10% for about 90% of the time, with a maximum pos- 
sible error of about 15%. The following listing shows the 



approximate range corrections for elevation angles of 90, 
15, and 0 deg and the corresponding 10% errors: 

magnetic latitude. It varies from essentially zero at a mag- 
netic latitude of k-90 deg to a maximum in the general 
vicinity of the magnetic equator. 

The time for the doppler or ranging signal to travel 
between the tracking station and the spacecraft is given 

90 
15 
0 

2.5 
9.5 

87 

0.25 
0.95 
8.7 

by Eq. (526). Since-the index of refraction of the iono- 
sphere is given by Eq. (524), the effect of the ionosphere 
on the propagation time is given by 

(532) 
Reference 57 describes the daily variations in the param- 
eters of the troposphere and the resulting variations in 
the range correction ATp. Since ST is expressed as the so-called ionospheric range 

correction Alp divided by c, 

Equations (530) and (531) are based upon the assump- 
tion that the spacecraft is at an infinite distance from the 
earth. The error due to this assumption increases as the 
topocentric range to the spacecraft decreases. The maxi- 
mum error is about 5 m, which occurs at an altitude of 
100 km and an elevation angle of 0 deg. 

An expression should be found which approximates 
with negligible error for all elevation angles the range 
correction ATp obtained from the ray tracing formulation. 
Furthermore, a correction factor should be added which 
accounts for the noninfinite range to the spacecraft. 

(533) 

For the ionosphere, the effect of the bending is negligible 
and the integral can be evaluated along the straight line 
path from the tracking station to the spacecraft. The 
propagation speed for the doppler signal is the phase 
velocity, which is greater than c, and hence the negative 
signs of Eqs. (532) and (533) apply. The ranging signal 
propagates at the group velocity, which is less than c, 
and hence the positive signs apply. The integral 

The change in the elevation angle due to tropospheric 
refraction, Ary, which affects directly observed angles, is 
computed from Eq. (406) or (407) of Section X. Equa- 
tion (407), which applies for high elevation angles, is &e 
standard flat-earth textbook equation (see Ref. 58, p. 61, 
Eq. 6). Equation (406), which applies for low elevation 
angles, was obtained by D. L. Cain by fitting to values 
obtained from the ray tracing formulas. The factor b, is 
the total bending of the path, which equals Ary for a 
spacecraft at infinite distance from the earth. The factor 
b, accounts for the noninfinite range to the spacecraft. 

c. Ionosphere corrections. The earth‘s ionosphere is 
caused by ultraviolet light from the sun ionizing the upper 
atmosphere. The maximum electron density is in the gen- 
eral direction of the sun. ence the density of charged 
particles above a tracking station increases and decreases 
with a diurnal period. A given tracking station passes 
under the point of maximum ellecbon density between 
12 p.m. and 3 p.m. local time (1:30 p.m., average). The 
electron density is a minimum and fairly constant through- 
out the night. The electron density also varies with the 

evaluated along a Particular (straight-line) light Path is 
referred to as the electron content for that path. It is a 
function Of: 

(1) Time of day. For an elevation angle y of 90 deg, 
the maximum electron content occurs between 12 
p.m. and 3 p.m. local time. The minimum electron 
content occurs at night. 

(2) Elevation angle. As the elevation angle decreases, 
the path length through the ionosphere and the 
electron content increase. 

(3) Geomagnetic latitude. The electron density ap- 
proaches zero as the geomagnetic latitude ap- 
proaches 290 deg. 

Unfortunately, the ionosphere is a very dynamic entity. 
There are models that describe the properties of the iono- 
sphere, but the parameters of the model vary greatly with 
the position in the ionosphere and with time for a fixed 
position in the ionosphere. The large and unpredictable 



variations in these parameters preclude the computation 
of Alp from a model. Thus, the only way of determining 
Arp is by making direct measurements of the ionosphere. 

These measurements may be obtained from a measuring 
station which is within a few hundred kilometers of the 
tracking station. wever, ideally, they would be made 
at the tracking station along the actual ray path to the 
spacecraft. Reference 59 describes the computation of 
Arp for the Mariner Mars 1969 mission and discusses the 
various types of ionospheric measurements and the pro- 
cedure used to map measurements obtained from stations 
near a tracking station to the actual ray path to the space- 
craft. The mapping is also discussed in Ref. 60. 

Some types of ionospheric measurements that can be 

(1) Dual frequency. Two different frequencies (one of 
which is an exact integer multiple of the other) are 
transmitted in phase. Since the phase velocity for 
the charged particles of the ionosphere and space 
plasma is frequencydependent, the two carrier sig- 
nals will be out of phase when received. This phase 
shift gives the total electron content along the ray 
path, using Eq. (532). 

(2) Group velocity vs phase velocity. As discussed in 
Section XI, doppler observables are equivalent to 
differenced range observables whose reception 
times are the end and start of the count interval. 
However, the ionospheric corrections for these 
pseudo-range-observables are the negative of the 
corrections for true range observables at the same 
epochs. Thus, a comparison of doppler observ- 
ables with differenced true range observables yields 
twice the correction to doppler observables due 
to the charged particles of the ionosphere and 
space plasma. The doppler correction represents 
the change in the electron content along the round- 
trip light path during the count interval and is 
used to correct the computed values of doppler 
observables. This  Differenced-Range Versus Inte- 
grated Doppler ( ID) technique does not pro- 
vide the absolute value of the electron content 
necessary to correct range observables. 

araday rotation. If the radio wave is linearly po- 
larized, the plane of polarization will rotate as the 
signal passes through the earth's ionosphere because 
of the presence of the earth's magnetic field. This 
is the Faraday effect. Since the earth's magnetic 
field is known, the polarization of the received sig- 

made are: 

nal minus that of the transmitted signal can be 
used to compute the electron content along the 
ray path due to the ionosphere. 

(4) Ionosonde. A radio signal is transmitted vertically, 
reflected by the ionosphere, and received by the 
transmitting station. The height of reflection h is 
the observed round-trip time multiplied by c/2. The 
electron density at this height is given by (Ref. 59) 

N e  = 1.24 x 10-2f2 (534) 
where 

N e  = electron density, electrons/m3 

f = transmitted frequency, 

As the frequency is increased, the density Ne and 
altitude h increase until the critical frequency is 
reached where the signal pierces the ionosphere. 
Substituting this frequency into Eq. (534) gives the 
maximum electron density Nma. The plot of h vs f 
gives the corresponding altitude ha,. Assuming 
that the electron density Ne vs altitude profile is 
given by the Chapman model (Eq. 525), the vertical 
electron content E,  is given by 

A comparison of E ,  from Eq. (535) with Faraday 
rotation data gives the scale height B.  Since B is 
fairly constant, a constant value is usually used at 
each ionosonde station to compute E,  from 
Eq. (535). 

Currently, there is no means for directly measuring the 
electron content along the ray path from any tracking 
station to the spacecraft. However, plans for converting 
the tracking stations to the dual frequency (S-band and 
X-band) mode of operation are under consideration. Un- 
fortunately, it will probably be for only the down leg of 
the light path. Implementation of such a system for both 
the up and down legs of the light path would provide a 
direct measure of the round-trip electron content, which 
would be used to compute the charged particle (iono- 
sphere and space plasma) corrections for computed dop- 
pler and range observables. 

RVID technique is currently being used at Deep 
Space Station 14 (Goldstone) to provide the charged- 
particle corrections for doppler observables. It will be 
available at other tracking stations when the Mu ranging 
system (see Section IX) is installed. Faraday rotation 



equipment is also available at Goldstone. However, most 
of the spacecraft to date (and probably those forthcoming) 
have not had the linearly polarized antennas that are 
required in order to use this equipment. Furthermore, this 
equipment does not measure the electron content due to 
space plasma. 

The approximate correction is based upon a uniform 
electron distribution between the altitudes of 206.5 and 
441.5 km. The elevation angle correction factor is the 
straight-line distance through this uniform ionosphere at 
the spacecraft elevation angle yo divided by the distance 
at the measurement elevation angle yM. 

For the Mariner Mars 1969 spacecraft, Faraday rotation 
data from tracking of a geostationary satellite and/or 
ionosonde data were obtained from measuring stations 
which were within a few hundred kilometers of some of 
the tracking stations. These measurements gave the elec- 
tron content along ray paths differing from that of the 
spacecraft. 

However, the physical separation between these paths 
and the difference in the measurement times were small 
enough so that the parameters of the ionosphere could 
be presumed to be the same for both paths. This enabled 
the electron content to be mapped from the measured ray 
path to that of the spacecraft, accounting for the differ- 
ences in time of day, elevation angle, and geomagnetic 
latitude. The details of this mapping are given in Ref. 59 
and are summarized in the following paragraphs. 

The Faraday rotation and ionosonde data were taken at 
a constant elevation angle y (90 deg for the ionosonde 
data). The ray path for each of these measurements pierces 
the ionosphere (assumed to be at an altitude of 400 km) 
at east longitude Ax. At an observation time t (UTC), the 
ray path to the spacecraft pierces the ionosphere at east 
longitude ho. Then the electron content for the spacecraft 
ray path must be obtained by correcting the electron 
content for the measured ray path that has the measure- 
ment time 

Finally, the electron content must be multiplied by a 
correction factor which accounts for the difference in the 
geomagnetic latitudes of the points where the spacecraft 
and measurement ray paths pierce the ionosphere (+o and 
+M respectively). This correction factor is (90deg - +o)/  

(90 deg - +M). 

Given the corrected electron content, the ionospheric 
range correction AIp is given by Eq. (533). 

riutional Equutions 
This section gives the formulation for the solution of 

the variational equations. The partial derivative of the 
spacecraft acceleration vector with respect to the solve- 
for parameter vector q is integrated numerically by the 
second-sum procedure to give the partial derivatives of 
the spacecraft velocity and position vectors with respect 
to q. These subpartial derivatives are used in Section XIV 
to form the partial derivatives of the doppler, range, and 
angular observables with respect to q. 

The partial derivatives specified in this section are ob- 
tained by differentiation of the formulation of Section V 
for the acceleration of the spacecraft relative to the center 
of integration. However, the relativity terms and the indi- 
rect acceleration of the center of integration due to the 
oblateness of the earth and moon are ignored. The nota- 
tion is that of Section V. 

tio tegr 

(536) owever, the spacecraft ray path has a different eleva- 
tion angle (yo )  than the measurement ray path (yM). 
Hence, the measurement must be multiplied by the ratio 
of the electron content at elevation angle yo to the elec- 
tron content at elevation angle yM. This correction factor 
is computed from an approximate formula which agrees 
very well with the ratio obtained from the ray tracing 
formulation (Ref. 55 and Subsection XII-B-2-a above) 
using h,, = 300 km and a scale height B of 39 km. 

where 

I, i, F = position, velocity, and acceleration vectors of 
spacecraft relative to center of integration with 
rectangular components x, y, and x referred to 
the mean earth equator and equinox of 1950.0. 
The argument is ephemeris time 

7 



= solve-for parameter vector en, 

where 

Z = A Z + B i + G  (545) 

where the first six columns of G corresponding to the 
injection conditions 

= [ $1 = state vector (position The variational equation (Eq. 545) is integrateg numeri- 
cally by the second-sum method to give Z and 2 as func- 
tions of ephemeris time t. The partial derivative of the 
spacecraft state vector. 

tors) Of spacecraft to 
bo t  the center Of 

C) at injection epoch to 

a = dynamic constants affecting spacecraft trajectory 

The state vector of the spacecraft relative to the center of 

(537) 

x = [-;I (545) 
integration at the injection epoch, Xo, is given by 

with respect to q at any time t is 
x, = x: + (xg)o 

(547) 
ax where 

(Xg)o = state vector of reference body B relative to cen- 
ter of integration C at injection epoch where 

(548) u=-- ax --- ax(t) - u (t, to) 
Differentiating Eq. (535) with respect to q gives ax: ax(t,) - 

ax 
aa 

V = -  (549) 

Let 

a'J 
ai 

=- 

For each parameter qi, three sum and difference numer- 
ical integration arrays, having two sums and 10 differences 
of a$aq i, a@/i3qi, and a2/aqi, respectively, are generated. 
These three sum and difference arrays may be interpolated 
at any time t to give ax,3E/aqi, ay,G/aqi, and az,;/aqi, 
respectively, which are the elements of the qi column 

(539) of u or V. 

When the injection conditions are referred to the center 
of integration, the initial value of aX/aq at the injection 
epoch is 

(550) 

(541) where Z is a 6 X 5 identity matrix. When the injection 
conditions are referred to a body B other than the center 
of integration C, 

(551) 

e eighteen sum and difference arrays for the six 
arameters are started at the injection epoch to, 

= Z(5 X 5) as initial conditions. For rea- 
sons that will become evident later, these sum and differ- 

(543) 
a i  z =  

(544) 

7 



ence arrays are restarted with initial values I at a number 
of intermediate epochs tl, tz, t3, * * * , tn. The U matrix of 

Eqs. 553 and 554). If the discontinuity occurs during the 
integration of the sum and difference arrays, they must be 
restarted using the increm a1 derivatives as ini- 
tial values. For ta < t < ti,, i may be obtained di- 
rectly by interpolation. Othe the accumulated value 

aai at the last discontinuity epoch or stop time for 
sum and difference arrays is mapped to the current time, 

q. (548) is then formed by the chain rule as: 

. . .  

= U(t,tn) U(tn,tn-,) * U(t1,tO) (552) using Eq. (554). 

Similarly, a U matrix from any intermediate epoch ti to 
any time t is formed by 

The A matrix is defined by Eq. (539). The terms of the 
spacecraft acceleration vector (considered in t h i s  section) 
which are a function of the spacecraft position vector are: 

u (t7 ti) = u (t7 tn) u (tn7 tn-1) * ' u ( t i+17  ti) (553) 

For a dynamic parameter ai, if the corresponding col- 
umn of the C matrix is always nonzero, the three sum 
and difference arrays are started at the injection epoch 
and continued for the duration of the mission. For each 

(1) The direct Newtonian point mass acceleration due 
to each celestial body i (nine planets, sun, and 
moon). 

Of these parameters, the elements of the column of the v 
matrix can be obtained by interpolation of the three sum 
and difference arrays at the desired time t. 

(2) The direct Newtonian acceleration due to oblate- 
ness for each oblate body j .  

(3) The acceleration due to the solar radiation pressure 
(SRP) and small force (SF) models. For certain other parameters ai, the column of the C 

matrix is nonzero only for t, < t < ti,, and the sum and 
difference arrays are generated only for this interval of 
time. For t < ta, aX/aai = 0. For ta < t < ti,, the column 

The A matrix is computed from the following sum of 
terms : 

of V is obtained by interpolation of the sum and difference .. . %.{)late a'r'(SRP - SF) 
ar + ar arrays. For t >ti,, A =  arge'wtonian + ar 

ax (t) ax(t) ax(ti,) - ax(tb) (554) (555) - U (6 tb) - -- 
aai ax(ti,) aai aai 

The formulation for computing each of these terms is 
given in the following Sections. The notation used iS  that 
of Section V. All vectors appearing in the formulation are 
column vectors. 

(ti,)/aai is obtained from the sum and difference 
at the stop tirne ti,, and u (t, ti,) is obtained from 

Eq. (553) using ti = ta. 

1. Contribution from Newtonian point mass accelera- 
tion. The direct Newtonian acceleration of the spacecraft 
due to body treated as a point 

Some parameters have an initial value aX(tb)/aai at a 
discontinuity epoch ti,, and the column of the C matrix 
is zero for all time. For this case, aX(t)/aai is computed 
directly from Eq. (554); no sum and difference arrays are 
generated for t h i s  type of parameter. 

is given by 

(556) 

where Some parameters are a combination of the two previous 
cases. A period of time ta < t < ti, exists when the column 
of C is nonzero and sum and difference arrays are gen- 
erated; also there are several epochs where discontinui- 
ties to the partial derivatives occur. At each discontinuity 

r = position vector of spacecraft relative to center of 
integration with rectangular components x, y, 
and x referred to the mean earth equator and 
equinox of 1950.0 

epoch or stop time for sum and difference arrays, the 
increment to the partial derivative is added to the accu- 
mulated partial and mapped to the next discontinuity 

.. 
E$ = 1950.0 position vector of body i relative to center 

of integration 

epoch or start time for sum and difference arrays (using p i  = gravitational constant of body i, km3/s2 

7 



fferentiating Eq. (556) with respect to r gives 

aY 3pi (r - rf) (r - $)T - pi1 

ifr IIr - r:1I6 11. - e 1 1 3  

-= 

where I is a 3 X 3 identity matrix. 

(557) 

from o ~ ~ t e n e s s  acce 
rect acceleration of the spacecraft due to the oblateness 
of one celestial body is given by Eqs. (169), (173), (174) 
and associated equations of Section V. 
Eq. (169) with respect to F, using Eq. (163), gives 

where 

aGT - = GT with each term differentiated with respect 
ax t ox  x+ y,z 

aGT.. 
-r‘ = first column of first term of Eq. (558) ax 

Differentiating Eqs. (173) and (174) with respect to r, +, 
and h and using Eq. (560) gives 

-- -0 a? (1) 
aY’ 

(563) 

I” n 

=Y’(J) +Y(C,S)  (559) 

where Y’ ( I n ) ,  ‘7 (Cnm), and Y’ (Snm) are the terms of Y’ due 
to Jn, Cnm, and Snm, respectively. The primes above the 
terms Pn and e indicate derivatives with respect to 
Sin+. 

6’ = RT 

The body-ked to space-ked transformation T, defined 
by Eq. (162), is a function of time only. The matrix R, 
given by Eq. (l6l), transforms from body-ked to u p  

east-north coordinates and is a function of the spacecraft 
position. Thus, 

(569) 



Then, lation used to compute the acceleration terms and the 
corresponding partial derivatives: 

aRT -= 
ax 

and 

Differentiating each eij gives 

1 -=[o,-- sin h - sin cp cos A sell 
a i  T ’  T 

ar’ T ’  r 1 -+,- aezl cosx - sin+sinx 

[o, - -,o] T cos + 
- = [ 0, - -, 0 1  

1 -= [O,  a i  TCOS+ ’ T 

1 -=[(I,- aezs sincpcosx - cos+sinx 

ar‘ 
aelz cos x 
-= art 

aezz Sin x 
ih.‘ T cos + 
aesz 

- [O,O,QI art 

ae,, sin+sinx - cos+cosx 

a i  TCOS+ ’ T 

-- 

Substituting Eqs. (573481) into Eq. (571) gives the 27 
terms of aRT/ax, aRT/ay, and aRT/az used in Eq. (568) to 
give aGT/ax, aGT/ay, and aGT/az, which are used in 
Eq. (558). 

The formulation for computation of Legendre poly- 
nomials for the oblateness acceleration terms was given 
in Section V. The following is an extension of that formu- 

(1) Legendre polynomials and derivatives 

(n = 1,2,3, * - ,nl) 

The Legendre polynomial P ,  is computed recur- 
sively from 

2n - 1 
P ,  = - n Sin 9 Pn-1 - (e) Pn-z (582) 

beginning with 

Po = 1 

P, = sin+ 

The first derivative of P ,  with respect to sin+, de- 
noted P:, is given by 

starting with 

P: = 1 (586) 

Differentiation of Eq. (585) with respect to sin+ 
gives 

beginning with 

P:’ = 0 (588) 

(2) Associated Legendre functions and derivatives 
(m = 2,3, * , n; n = 2,3, - * , n,). Compute 
see2 + e by &st generating 

sec2 4 Pi = (2n - 1) cos + (see2 + Pi::) (589) 

for n = 2,3, * * , n,, starting with 

s e c 2 + 9 = 3  (590) 

and then generating 



For each value of m between 2 and n,, n is varied 
from m + 1 to n,. The general term Pi is zero 
if b > a. Multiply sec2 + by cos # and cos2 + to 
give sec ,+ P; and P;, respectively. 

The derivative of PE with respect to sin+, de- 
noted Pp', is computed from 

P;' = -nsin+(sec2+e) +(n+m)(sec2+P;-l) 

(592) 
Multiplying Eq. (592) by cos2 + and differentiat- 

ing with respect to sin+ gives 

c o s 2 + r  = -(n-2)sin+Pp' 

+ (n + m) PE:l - nP; (593) 

(3) Associated Legendre functions and derivatives 

(m = l ; n  = 1,2,3, - * ,%) 

Compute 

2n - 1 
sec + P; = (yq-) sin + (sec + 

(594) - -  ( : 1> (sew pi-2) 

starting with 

sec 4 Pi = 1 (595) 

Multiply Eq. (594) by cos + and l/cos 4 to give Pi 
and se?+ Pi, the latter of which is indeterminate 
for 4 = 90 deg. 

Compute 

cos+ P;= -nsin+(sec+Pl,) + (n + l)(sec+ Pt,) 

(596) 

ultiplication by l/cos+ gives Pr,  which is inde- 
terminate for + = 90 deg. 

The following sums (derived from Eq. 155) are 
not indeterminate when + = 90 deg, although their 
individual terms are 

(sin + sec2 + Pk + Fn') = sec + P: (597) 

(cos2 + PZ - sin + Pi') = 

- P i - -  3sin+(sec+P:) + P i  
(598) 

The Legendre functions that are indeterminate 
for + = 90 deg appear in Eq. (565). 

3. Contribution from solar radiation pressure and small 
force models. The acceleration of the spacecraft due to 
the solar radiation pressure and small force models is 
given by Eq. (189). The spacecraft position vector r affects 
rsp, EPS, and the unit vectors WSP, X*, and U*. Hence, 

(599) 

where .. r = acceleration of spacecraft due to solar radiation 
pressure and small forces (Eq. 189) 

rSRp = acceleration of spacecraft due to solar radiation 
pressure (terms of Eq. 189 proportional to Ap) 

.. 

From Eq. (190), 

where I is a 3 X 3 identity matrix. From Eq. (191), 

-sin K COS K 

From Eq. (194), 



If the reference body B is a star, column of the V matrix for some of the dynamic param- 
eters ai. 

(803) 
-=[-,-,-I=() aw, aw, aw, av, 
ar ax ag ax 

If the reference body B is a planet or the moon, we obtain 

where aWL/ar is computed from Eq. (604) using UL in- 
stead of V R  and B = earth. 

. ~ o ~ p u t a t i o n  of B Matrix 

The terms of the spacecraft acceleration vector con- 
sidered in this section are not a function of the space- 
craft velocity. Hence, currently, 

where the zero indicates a 3 X 3 null matrix. 

les for etsr 

In this section, the remaining partial derivatives neces- 
sary to generate the three s u m  and difference arrays for 
each parameter will be specified. These include the col- 
umn of the C matrix and the initial values for 
discontinuities to it for each parameter qi. 

ection parameters, The method of generating the 
18 sum and difference arrays for the six injection param- 
eters has been specified in Section XIII-A. Given these 
sum and difference arrays, the U matrix from the injec- 
tion epoch is computed from Eq. (552) and the U matrix 
from each discontinuity epoch or stop time for sum and 
difference arrays is computed from Eq. (553). These latter 
mapping matrices are used in the computation of the 

m e  parameters. The reference parameters f 
consist of 

AE = the number of kilometers per AU 

R E  = the scaling factor for the lunar ephemeris, 
km/fictitious earth radius 

E = osculating orbital elements for the heliocen- 
tric ephemeris of a planet or the earth-moon 
barycenter or for the geocentric lunar ephem- 
eris 

pE, p x  = gravitational constants for the earth and 
moon, respectively, km3/s2 

They affect the position vector rp of each perturbing body 
i (a planet, the sun, or the moon) relative to the center 
of integration, and hence affect the Newtonian point mass 
and oblate acceleration of the spacecraft due to these 
bodies. The partial derivative of the spacecraft accelera- 
tion i.' with respect to the reference parameters f (due to 
moving the perturbing bodies) is given by 

i 

where 

ai: - I ] - - (from Eq. 558) Ilr - rYlls ar 

The first two terms of Eq. (609) are the derivatives of the 
indirect and direct terms, respectively, of the Newtonian 
point mass acceleration with respect to r:. The last term 
is the derivative of the direct acceleration due to the 
oblateness of body i with respect to r:. This acceleration 
is a function of (r - r:). ence aF/ar: = -aF/ap. com- 
puted from Eq. (558). 

The acceleration due to solar radiation pressure and 
small forces (SW-SF) is affected by the positions of the 
sun, earth, and reference body (for roll control) relative 

owever, the partial deriva- 
to r? is about four orders 

of magnitude less than the first two terms of Eq. (609) 
can safely be neglected in the partial derivatives. 
ce, these terms do not appear in Eq. (609). 



Section IV gives the formulas for computing corrected 
position and velocity vectors for the heliocentric ephem- 
eris of a planet or the earth-moon barycenter or for the 
geocentric lunar ephemeris. Also, the corrected position 
and velocity vectors of the moon relative to the earth are 
broken down into the position and velocity vectors of 
the barycenter relative to the earth and of the moon rela- 
tive to the barycenter. The relative position or velocity 
vector between two bodies (a planet, sun, or moon) is 
computed as a sum of the above vectors (see listing in 
Section IV-C). Correspondingly, the partial derivative of 
the relative position or velocity between two bodies with 
respect to f may be computed as the sum of partial deriva- 
tives of each subvector with respect to f. The partial 
derivatives of each basic position or velocity vector with 
respect to the reference parameters that affect it are ob- 
tained from the derivatives of Eqs. (lll), (112), (150), 
and (151): 

The partial derivatives 

are computed from the formulation of Subsections IV-B-3 
and -4. 

and 

where 

(ELE 
P = G  

and all position and velocity vectors are corrected values. 
These equations are used to compute ax 

The sum and difference arrays for AE, RE, and E for 
each ephemeris to be corrected are started at the injec- 
tion epoch Tinj and continued for the duration of the mis- 
sion. The initial values of aX/aqc are obtained from 
Eq. (550) or (551), as appropriate. The columns of the C 
matrix are obtained from Eq. (608). At a change of phase 
(change of center of integration), aX/aqi must be incre- 
mented by the following value, which necessitates a re- 
start of the sum and difference arrays: 

where 

Xt = state vector of old center of integration relative 
to new center of integration at time of phase 
change with rectangular components referred to 
mean earth equator and equinox of 1950.0. 

3. Gravitational constants (ELI. The gravitational con- 
stants p i  for the planets, sun, and moon affect the New- 
tonian point mass and oblate acceleration terms directly. 
The constants pE and pdf  are reference parameters, and 
hence may also affect these acceleration terms indirectly. 
Also, they may produce nonzero initial values at the injec- 
tion epoch and discontinuities to the partials at phase 
changes. 

The sum and difference arrays for the p j  are started at 
the injection epoch with initial values given by Eq. (550) 
or (551). They may be nonzero for pE or (ELM if the injection 
conditions are not referred to the center of integration. 
The column of the C matrix for (ELj is given by 

where Y(Pj)/pj is the sum of the direct and indirect New- 
tonian point mass accelerations and the direct oblate ac- 
celeration due to body j ,  computed with p j  = 1. The 
second term of Eq. (621) is Eq. (608) and may be nonzero 



for pj = pE or px. At a change of phase, 

a restart of the sum and difference arrays. 
/apx must be incremented by Eq. (620), necessitating 

armonic coefieients Jn, Cn,, Snm. The accelera- 
tion terms due to the harmonic coefficients Jn, Cnm, Sm 
of an oblate body are computed only when the distance 
of the spacecraft from the center of the body is less than 
a value specified by the user (radius of the "harmonic 
sphere" for that body). Thus, the three s u m  and difference 
arrays for each harmonic coefficient are started when the 
spacecraft enters the harmonic sphere (or at injection) 
and are terminated when the spacecraft leaves the har- 
monic sphere. The initial value of ax/aqi is zero. The col- 
umn of the C matrix for Jn, Cn,, and Snm is computed 
from 

The acceleration due to each In,  Cnm, and S,, may be 
obtained from Eqs. (leg), (173), and (174). However, in- 
stead of dividing the acceleration term by the coefficient 
(which may have an a priori value of zero), the accelera- 
tion term is simply computed using a value of unity for 
the coefficient. 

ts of solar r a d ~ t ~  pressure and small . The acceleration of the spacecraft due to 
model is given by Eq. (189). The columns 

of the C matrix for the 15 parameters of the model are 

i = r,x,ory 

ay aY -- - - (EPS) i = r, x,  or y (633) ac!, aGi 

The three sum and difference arrays for each of the nine 
SF parameters are started at TAal, using zero for the initial 
values of the partial derivatives, and continued to the 
epoch TAcz. The three s u m  and difference arrays for each 
of the six SRP parameters are started at TSRp, using zero 
for the initial values of the partial derivatives, and con- 
tinued for the remainder of the mission. Each time the 
spacecraft passes into or out of a shadow, all sum and 
difference arrays must be restarted. 

6. Coeficients of finite burn motor model. The acceler- 
ation due to a finite motor burn is given by Eq. (197). 
The columns of the C matrix for the polynomial coeffi- 
cients Fi, ai, and Si (i = 0,1,2,3, or 4) are 

" = a [  -cos c o s y a l t i  6 sina 

aai 

-sin 6 cos a 
(636) 

- = a [  asi at -sinssina]i. 

cos 6 

The three sum and difference arrays for each of these 
parameters are started at To with zero initial conditions 
and terminated at Tr I= To + 2'. 

e thee s u m  and difference arrays for To (specified 
in the UTC, ST, or A1 time scales) are started at To using 
as initial conditions: 
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The column of the C matrix for To is There are no s u m  and difference arrays for these four 
parameters. However, the initial values of the partial 
derivatives at TM are 

(638) 
a;r" - = -  

aT, 

where 

0 1 0  0 

0 0 1  0 

- ~ c ~ ~ s s i n ~  - asin8cosa 
meters afecting tramformation from atomic 

time to ephemeris time. The parameters ATlBas and 
Afcesium affect the ET values of the following epochs, 
specified in a known Lime scale (Al, UTC, UTI, or ST, but 
usually UTC) and represented as seconds past January 1, 
1950, Oh: 

&cos 8 cos a! - i sin 6 sin CY 

i cos a 
(640) 

and 

d; = a1 + 2aZF + 3ff33 + 4cu4t'" (W 
(1) Injection, Tinj 

(2) Unfolding of solar panels, TsRp 
i = s1 + 28,f+ 3a33 + 4833 (642) 

The sum and difference arrays for To are terminated at 
Tf = To + T, and the following increment to the partial 
derivatives is added: 

(3) Start and Stop times for m d l  force PolYnomhls~ 

(4) Epoch of instantaneous maneuver, TH 
TAC~ and TAOZ 

(5) Start and stop times of finite burn motor, To and Tf 

Since the acceleration versus time curve for the finite burn 
motor is shifted in ET, sum and difference arrays for 
ATlga8 and Afcesium must be generated from To to 
Tt = To + T. Also, discontinuities to the partial deriva- 
tives with respect to ATlSS* and A#feesium occur at Ti,j, 

(843) -_ - - - - - - - -  
a (Tf) tJ (Tf) 

A-- 

The initial value of the partial derivative with respect to 
T occurs at Tf: 

Ts~p, TAC~, T A C ~ ,  TM, To, and Ti. 
aT a (Tf) tJ (Tf) 

The partial derivatives of the ET value of an epoch T 
specified in the AI, UTG, UTI, and ST time scales with 
respect to AT1953 and Afcesium are (see Eq. 93) 

There are no sum and difference arrays for the param- 
eter T. 

= 1  (647) 
meters for instantaneous burn motor mo aT (ET) 

motor burn of short duration or a spring separation may aATis58 
be represented as a discontinuity to the spacecraft tra- 
jectory. The rectangular components d the velocity incre- 

The increment to the spacecraft position at the maneuver 
epocR TH is computed as 

(M8) 
T - 252,460,800 

9,192,631,770 
- _  ment & and the burn Lime t a  are the solve-for parameters. - 

a Af ce8 i urn 

change in the ET value of the inject' 
), holding the injection state vector 1 

2 fixed, is equivalent to the following changes in the injec- & = - & b  



tion position so and velocity io relative to the center of 
integration at the nominal epoch Tinj( 

where 

e = solve-for velocity of spacecraft relative to body B 
at injection epoch 

= acceleration of spacecraft relative to body B at 
injection epoch 

Hence, the initial values of the partial derivatives of 
with respect to AT1958 and Afcesium at the injection epoch 
are 

Similarly, at the epoch TH of an instantaneous maneuver, 
aX/a (AT1958) and aX/a (Afcesiurn) must be incremented by 

(653) 

aX (TH) - TH - 252,460,800 ai - [ i r - -z . - ]  (654) 9,192,631,770 rz - rl A 
aAfces i urn 

The three sum and difference arrays for ATlg58 and for ’ 
Afcesiurn are started at To for the finite bum motor and 
terminated at Tf = To + T. The initial values of the par- 
tial derivatives are given by 

The increments to the partial derivatives occurring prior 
to To are mapped to To and added to the above values. 
The columns of the C matrix are computed from 

ak’ - = - [;; w + a Ij] 
aAT1958 

[i U +a 61 (660) 
To - 252,460,800 - - ai: 

a Af ces iurn 9,192,631,770 

At Tf, the partial derivatives must be incremented by 

where 

Y2 = Y at TH after Ar, A i  have been added 

= Y at TH before Ar, A; have been added 

At the epoch TsRp where the solar panels are unfolded, 
the partial derivatives must be incremented by 

Since the small force accelerations are extremely small, 
the increments to the partial derivatives at TAo and TAG, 
have been ignored. 

e solution to the variational equations is the matrix 
by Eq. (547). The U matrix is computed using 

Eq. (552). Each column of the V matrix corresponding to 
parameter qi is obtained by one or more of the following 
methods: 

(1) Interpolation of the three sum and difference arrays 
for 44. 

(2) Mapping forward the final partial derivatives from 
discontinued sum and difference arrays, using 
Eq. (554). 

(3) Mapping forward a discontinuity to the partial de- 
rivatives using Eq. (554). 
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This section gives the formulation for computing the 
regression partial derivatives which are the partial deriva- 
tives of each observable 
solve-for parameter vector 
mulation for integrating 
yield the partial derivatives 
tor at any time t with resp 
derivatives are required to form the regression partial 
derivatives. 

The general expression for computing the partial deriv- 
atives of doppler and angular observables with respect to 
q is given in Section XIV-A. The formulation for com- 
puting the various terms appearing therein is given in 
Sections XIV-A to -E. The formulations for computing the 
partial derivatives of range observables and differenced- 
range doppler observables with respect to q are given in 
Sections XIV-F and -G respectively. 

The DPODP currently does not have the capability for 
solving for the relativity parameter y. However, approxi- 
mate partial derivatives of the observables with respect 
to y are included in Sections XIV-E and -F. These partial 
derivatives are based solely upon the variation of the rela- 
tivity term of the light time equation (Eq. 203) with y. 
A solution for y using these approximate partial deriva- 
tives should converge when the spacecraft passes through 
superior conjunction and the relativistic correction to the 
light time becomes very large. The partial derivatives do 
not account for the smaller effect of y on the ephemerides 
of the celestial bodies and the spacecraft. 

ler 

Let 

z = an observable quantity (doppler or angles) 

= solve-for parameter vector 

r? ( t . )  
f (ts) = [ 7%- -:] =heliocentric state vector (position 

and velocity vectors) of direct 
participant i at its epoch of partici- 
pation ti, with rectangular 
components referred to the mean 
earth equator and equinox of 
1950.0. The units are km and 
km/ephemeris second. 

': (ti) 

The direct participants i are 

1 = transmitter on earth at transmission time t l .  

2 = spacecraft at intermediate time tz (or transmission 
time t2 for angular observables or 1-way doppler). 

3 = receiver on earth at reception time t3. For doppler, 
t3 is the midpoint of the count interval T,. 

For purposes of obtaining partial derivatives of an observ- 
able z with respect to the parameter vector q, 

Differentiating Eq. (663) with respect to 

c, time transformations=eonstant 

c, time transformations=constant 



The terms of Eq. (664) are of two basic types. The last 
term gives the direct variation of the observable z due to 
a variation in g, holding the state vectors of each partici- 
pant constant. The remaining terms give the variation in 
the observable due to variations in the state vectors of 
each participant. The term on line 1 and the first terms on 
lines 2 and 3 give the direct variation in the state vector 
(and hence z) with respect to a variation in q holding the 
epochs of participation constant. Since the state vectors 
are a function of q, the epochs of participation t2 (ET) and 
t ,  (ET) obtained from the solution of the light-time prob- 
lem will also vary with q. The second terms on lines 
2 and 3 account for this effect. The epochs of participation 
may also vary due to variations in c, the speed of light,3o 
and the parameters affecting the time transformations 
which are used in the light-time solution. The partial 
derivative of z with respect to q due to these effects is 
indicated on line 4. 

The partial derivatives of the heliocentric state vectors 
with respect to the parameter vector q, holding the epochs 
of participation constant, are given by the following sums: 

In Section XIV-C, the formulation is given for com- 
2 (tz)/aq (if point 2 

is a landed spacecraft on a celestial body). 

The partial derivatives (ta)/ag, axg2 (tz)/aq, a d  
z(tl)/aq are computed from the following (where 

E = earth, M = moon, B = earth-moon barycenter, 
P = planet, S = sun): 

where the right-hand terms are obtained from Eqs. (610- 
619) (Eq. 610 applies also for P = B).  The columns of 
Eqs. (668-670) are nonzero only for the reference param- 
eters Am, RE, pm, par, and osculating orbital elements E for 
the ephemeris of a planet, the earth-moon barycenter, or 
the moon. 

tained by differentiating the light time equations<Eqs. 313 
2 axr(t2) ax.,z(t2) and 314), ignoring the relativity terms. Using the notation 

of Section VIII-C, the results are aq aq aq (666) - +- 3x8 (t2) 

where at, (ET) at, (ET) i,, 1-- as aq C 
-- -- 

B2 = center of integration for free spacecraft or body - - 
on which a landed spacecraft is resting 

E=ear th  

S = sun 

The partial derivatives az 
( t l )  for doppler and angular observables are given 

in Section XIV-B. 

For a free spacecraft, a (t2)/aq is obtained from tRe 
solution of the variational equations (Section XIII). 

30The speed of light is an adopted constant that defines the light- 
second as the basic length unit. It is not normally included in the 
solution vector. 

The partial derivatives of (t3), e(tz), and e(tl) with 
respect to q are simply the first three rows of Eqs. (665- 
667), respectively. 

The last two terms of Eq. (664) are evaluated in Sec- 
tions XIV-T-D and -E, respectively. 

or angular observables, Eq. (664) is evaluated with the 
of each participant taken to be its position 

vector only. Since angular observables and 1-way doppler 
involve only two participants, the third line of Eq. (664) 
is omitted for these data types. 
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From Eq. (311), the partial derivative of a subinterval 
doppler observable z with respect to g is given by 

where zi is the doppler observable computed for subinter- 
val i and ax i /aq  is computed from Eq. (664) and associated 
equations using a count time of T,/m. 

les. One-way, e-way, and 3-way 
doppler observables are computed from Eqs. (302), (308), 
(309), (310), (343), (344), (371), (372) and auxiliary equa- 
tions of Section VIII. The partial derivatives of these ob- 
servables with respect to the heliocentric state vectors of 
the three participants are obtained by a straightforward 
differentiation of these formulas, ignoring the terms of 
Eqs. (308), (309), and (310) which contain the very small 
factors F1, F, and A. 

The l/c and 1/c2 terms of Eqs. (343) and (344) for 
[ l  - (FR/FT)] were differentiated. For 2-leg doppler 
(2-way or 3-way doppler), however, the relativistic terms 
(c+~ - +3) and YZ (8: - i%) were ignored. The potential term 
contributes a maximum of only about m/s to range 
rate. The velocity term has a maximum value of about 
0.1 m/s, but its variation due to a variation in the param- 
eter vector q is very small. For 1-way doppler, these rela- 
tivistic terms can be very large, and hence were included 
in the differentiation. For this purpose, the potential was 
assumed to be due to the sun only, a reasonable assump- 
tion for the inner part of the solar system. 

where 

and 

nly the l/c terms of Eqs. (371) and (372) for 
[l - (FR/FT)]** were differentiated. 

Near earth, with a range p = f12, f 2 3  = 100 km, and 
a count time T ,  = 10 s, the partial derivatives from 
[l - (FR/FT)].. are the same order of magnitude as those 
from [l - (FR/FT)]. Since the 1/c2 terms of [l - (FR/FT)]'. 
were not differentiated, the partial derivatives for t h i s  
extreme near-earth case are good to about four figures. 

The ratio of the partial derivatives derived from 
[l - (FR/FT)].' to those derived from [l - (FR/FT)]  is 
proportional to (Tc/p)2. For p increasing from 100 km 
(with T, = 18 s) to lo6 km (with T ,  = 1000 s), the factor 
(TC/p)2 reduces by four orders of magnitude, and the 
partials from [ l  - (FR/FT)]** are the same order of mag- 
nitude as those from the 1/c2 terms of [l - (Fa/FT)]. 
Hence, when the spacecraft is far from the earth (and 
other bodies), the partial derivatives are accurate to seven 
or eight figures. 

In deriving Eq. (664), the dependency of the observable 
x on the acceleration and jerk of each participant 
was ignored. This omission limits the accuracy of the 
partial derivatives to four or five significant figures for 
p = 100 km, and seven or eight signitlcant figures for 
p = lo6 km or more. This limitation on accuracy is the 
same as that resulting from truncating the doppler for- 
mulas before differentiating. 

The partial derivative of 1-way doppler (Fl), 2-way 
doppler (F2), or 3-way doppler (F3) with respect to the 
heliocentric state vector X: (ti) of the ith direct participant 
at its epoch of participation ti is 

---- i = 1,2, or3 
az 

- C, 

z = Fl, F2, or F3 

c2 f8,a for F1 
C, fq  (tl) for F2 
C, f q  (tl) for F3 

31The jerk vector is the time derivative of the acceleration vector. 

(673) 
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The partial derivatives of [l - (F,/FT)]* (see Eq. 3 
with respect to the heliocentric position and velocity vec- 
tors of each participant are functions of the following 
quantities (see Section VI11 for definitions of terms): 

(674) 

D ‘i) = Eq. (674) with subscript 12 changed to 23 
and vice versa, and subscript 1 changed 
to 2. 

D* = D with the i 2 3  term removed 

(675) 

E (12-23) = Eq. (675) with subscript 12 changed to 23 
and vice versa. 

E* = E with the $23 term removed 

For 2-way or 3-way doppler, 

For 1-way doppler, 

For 2-way or 3-way doppler, 

For 1-way doppler, 

The partial derivatives 
pect to the heliocentric p rvables 

vectors of the spacecraft and tracking station are 
Eqs. (449-461) and auxiliary formulas of Section 



spacecraft on a planet or the moon with xespect to the 
parameter vector q. The parameters that affect these state 
vectors are the three spherical or cylindrical coordinates 
of a fixed tracking station or landed spacecraft and spheri- 
cal coordinates at an epoch plus velocity and azimuth for 
a tracking ship. Each of the state vectors above, with rec- 
tangular components of position and velocity referred to 
the mean earth equator and equinox of 1950.0, will be 
denoted here by 

5o = [ >!] 
r50 

From Eqs. (242), (243), (246), and (247), 

where r b  is the body-fixed position vector of the station 
(fixed tracking station, tracking ship, or landed spacecraft) 
defined in Section VII-A, f, is the body-fixed velocity vec- 
tor (nonzero for the tracking ship only), Ti is the 3 X 3 
transformation matrix for body i which transforms body- 
fixed rectangular components of a vector to rectangular 
components referre4 to the mean earth equator and equi- 
nox of 1950.0, and Ti is the derivative of Ti with respect 
to ephemeris time. The body-fixed to space-fixed trans- 
formations Ti and ?, are not functiqns of solve-for param- 
eters. The one exception to this is TE for the earth, which 
is a function of Afceaium. However, it affects the magnitude 
of i50 by less than le5 m/s, and hence is ignored in the 
partial derivatives. Thus, 

eS Qf bQdY-fiXed p O & h  and d Q C i @  

V ~ C ~ Q ~ S  with respect parameter W C ~ Q ~ .  Discussed below 
are the cases for the fixed tracking station (or landed 
spacecraft) and the tracking ship. 

a. Fixed tracking station or landed spacecraj3. The 
partial derivatives of n, with respect to spherical station 
coordinates are obtained by differentiating Eq. (212): 

L rcosrp 

--T cos (b sin x 
r cos rp cos X 

0 
ax 

The partial derivatives of rb with respect to cylindri- 
cal station coordinates are obtained by differentiating 
Eq. (213): 

(895) 

These partial derivatives are evaluated with coordinates 
referenced to the true pole, equator, and prime meridian 
of date (the body-fixed coordinate system). They apply 
for the solve-for coordinates of a landed spacecraft, 
which are referenced to this coordinate system, and also 
for the solve-for coordinates of a tracking station on 
earth, which are referenced to the mean pole, equator, 
and prime meridian of 1903.0. For this latter case, the 
partial derivatives are accurate to approximately seven 
significant figures. 

b. Tracking ship. The formulation for computing rb for 
a tracking ship is given in Subsection VII-B-2. The solve- 



for parameters of this model are the constant geocentric 
radius r, the latitude (Po, and longitude ho at the epoch 
to(UTC), the constant speed v, and the constant azi- 
muth A. From Eq. (239), the partid derivative of Fb with 
respect to each of these parameters, denoted as qi, is com- 
puted from 

Similarly, from Eq. (M), 

The partial derivatives of r, with respect to b, and A are 
given by Eqs. (692) and (693). The last term of Eq. (697) 
is nonzero only for qi = T; it is given by Eq. (691). The 
partial derivatives of gl, with respect to + and x are ob- 
tained by differentiating Eq. (240): 

(699) - -  ail, 
a+ 
_-  

L sin+ J 

1 cosAsin+sinh - sinAcosA 
ak, 
ax -= -COSAS~~+COSX - sinAsinh v (TOO) 

0 

The last term of Eq. (698) is nonzero for qi = A and 0: 

sinAsin+sin.h + cosAcosX v 

sinAsin+cosX - cosAsinA 1 (701) -sinAcosb, 

which shoultd be computed from Eq. (240) with o = 1. 

e partial derivatives of + with respect to the solve- 
for parameters are obtained by differentiating Eq. (235): 

(705) 

[ t  (UTC) - t o  (UTC)] (706) 
z) sin A - -- -- a+ 

aA T 

[t  (UTC) - t o  (UTC)] a+ COSA --- - 
a0 T 

The partial derivatives of A with respect to the solve-for 
parameters are obtained by differentiating Eq. (237) using 
Eqs. (703-707) for A # 90 deg or 270 deg and by differen- 
tiating Eq. (238) for A = 90 deg or 270 deg. For A#QO 
deg or 270 deg, 

(709) 
ax 1 1 
- = tan A (G - -) cos 4 0  
a+0 

ax 
axo - = I  

-- ax - sec2Aln 
aA 

(711) 
o sin A tan A 

T cos + - [t  (UTG) - t o  (UTC)] 

[t  (UTC) - t o  (UTC)] (712) 
ax  sin^ 
a0 ~ C O S ~  
-=- 

For A = 90 deg or 270 deg, with the top sign applying for 
A = 90 deg and the bottom sign applying for A = 270 deg, 

[t (UTC) - t o  (UTC)] (413) 
V 

=T- 
ax 
aT T2 cos +o 
- 

ax - = (x - .Ao) tan +o 
840 

ax 
axo 
-- - 1  

[t  (me) - t o  (UTC)] (717) 
ah 
av r cos $0 
-=e- 



This section gives the partial derivatives indicated on 
line 4 of Eq. (664). These are the partial derivatives of 
doppler and angular observables x with respect to 
to (1) variation of the speed of light c in the light time 
solution only, and (2) variation of the time transforma- 
tions used in the light time solution. The parameters 
affecting the time transformations are ATl958 and Afcesium, 

which affect (ET - Al), and the polynomial coefficients 
a, b, and c (specified by time block) of (UTC - ST) for the 
receiving station. Additional terms for ax/aATlg5,, Afoesium 

arise from the variational equatio These partials are 
substituted into the first term of q. (666) and hence 
appear on line 2 of Eq. (664). The polynomial coefficients 
b and c and the speed of light appear explicitly in the 
doppler equations; hence, line 5 of Eq. (664) contains 
additional terms for the partial derivatives of x with re- 
spect to these parameters (see Section XIV-E below). 

t c. Given the reception time t3 (ET), 
the solution of the light time problem for t2(ET) and 
tl(ET) is affected by the value used for c. For angular 
observables, however, a change in c of 3 km/s along with 
a spacecraft velocity of 300 km/s will produce a maxi- 
mum change of only 0.002 arc seconds. Hence, this partial 
derivative is ignored for angular observables. The partial 
derivative of a doppler observable x with respect to a 
change in c in the light time equation is given by 

Differentiating the light time equations for the down and 
up legs (Eqs. 314 and 313, respectively) with respect to c 
gives 

For 1-way doppler, omit the second term. 

arametws a ~ e c ~ ~ n ~  trans f ormath:  
computed from 958 and Affoeaium. The observ 

state vectors 

functions of ephemeris time. From Section YII-D, the 

ctions of both the 
er, the variation 

T) is insigdicant compared with 
for purposes of tak- 
(ti) are considered 

to be functions of UT1 only. 

Given the data time tag t3(ST) (the midpoint of the 
count interval for doppler observables), the values of 

T) and t,(UTl) are computed from 

t3 (ET) = t 3  (§T) + (UTC - s 
+ (A1 - UTC)t, + (ET - Al)t3 (425) 



t 3  (UT1) = t 3  (ST) + (UTC - ST)t3 

+ (A1 - UT@)t3 - (A1 - UTl)t, (726) 

qs. (93-96) for these time transformations, 

(7.27) 

(728) 
t 3  - 252,460,800 = -  at3 (ET) 

aAfcesium 9,192,631,770 

= O  
at3 (UT1) - at3 (UT1) 

aAT1958 aAfcesium 
- (729) 

Differentiating the light time equation for the down leg 
(Eq. 314) with respect to AT1958 and Afcesium gives 

where 

ifferentiating the light time equation for the up leg 
(Eq. 313) and 

t 1  (UT1) = ti (ET) - (ET - Al)t, - (A1 - UTl)t, 

(732) 

with respect to AT1958 and Afcesium and solving simul- 
taneously for the partial derivatives of tl (ET) and tl (UT1) 
With respect to AT1958  and Affcesium gives 

where 

and 

1 
 AT^^^^ C 

= - -(ez + e3) at, (UT1) 

( t3  - tl) - -  - at, (UT1) 
aAfcesium 9,192,631,770 

1 t 3  - 252,460,800 
9,192,631,770 + - (+;2 + %3) 

C 

where terms of order ( V / C ) ~  or terms having 
tude have been ignored in Eq. (733). 

(734) 

(735) 

(736) 

that magni- 

Using the above partial derivatives, the partial deriva- 
tive of a 2-way or 3-way doppler observable with respect 
to a variation of AT1958  or Afcesium in the light time solu- 
tion is: 

+ 

where use is made of 
For one-way doppler 

qs. (724), (728), (435), and (736). 
angular observables, there are 

d the terms containing the factor 

c. 
at the receiving station to UTC is given by 

) = aR + bRt + cRtz (738) 

where the coe5cients aR, bR, and CR are specified by time 
block (the subscript R denoting the receiving station for 
the observable), and the argument t is seconds past the 
start of the time block. 

e values of aR, bg, and cR affect the transformation 
the data time tag ta (ST) to all other time scales 

affect the values of tz and tl from 
rom Eqs. (353), (354), (425), ( 

of 2-way or 3-way doppl 



servables with respect to a variation of aR in the light time 
solution is given by 

ax ax 

1. Speed of l ~ g ~ ~  c. Doppler observables are computed 
from Eqs. (302), (308), (309), (310), (343), (344), (371), and 
(372) and associated equations of Section VIIP. 
of light c appears explicitly in the latter four expressions, 
which may be written as 

--- 

For 1-way doppler or angular observables, omit the last 
all doppler and angular observables, 

ax a;z 

ab,= aa, - t 3  

and 

(740) The derivative of a doppler observable z with respect to c 
appearing explicitly in the formulation is given approxi- 
mately by 

where t3 is the reception time of the signal measured in 
seconds past the start of the current time block for UR, b R ,  
and cR. 

~ t ~ t e  Vectors Fixe 

This section gives the partial derivatives indicated on 
line 5 of Eq. (664). They are the partial derivatives of 
doppler and angular observables with respect to the 
parameters that affect the data directly, holding the state 
vectors of each participant constant. The parameters in 
this category that significantly affect the observables are 
the speed of light c and the polynomial coefficients b and c 
of (UTC - ST) appearing in the doppler formulation, 
the polynomial coefficients afT0, fFl, and f T 2  of the 1-way 
doppler transmitter frequency, the small rotations v', E, P' 
or 7, E, of the reference coordinate system at the tracking 
station for angular observables, and the parameter y of 
the Brans-Dicke theory of relativity. 

The unit vect to which the angles 
referenced, and o which a,y; X,Y; and 
referenced, are functions of the station coordin 
ever, for a 100-m change in station location, the maximum 
change in orientation of any of these unit vectors is only 
3 arc seconds, which is less than the 7- to 11-arc-second 
accuracy of directly observed angular position. Thus, the 
partial derivatives of angular observables with respect to 
t h i s  particular effect of change in station coordinates are 
ignored. 

where C, is defined after Eq. (673). 

2. Polynomial coefficients b and c of (UTC - SIP). 
The polynomial coefficients bR and cR used to compute 
UTC - ST at the receiving station at t3 affect the fac- 
tor F,  of l-way doppler and the factor F of 2-way and 
3-way doppler. The polynomial coefficients b T  and CT 

used to compute UTC - ST at the transmitting station 
at t, also affect the factor F. From Eqs. (297), (306), and 
(308-310), the partial derivatives of 1-way, 2-way, or 
3-way doppler observables (denoted as z)  with respect to 
b R  and CR used at t3 (and appearing explicitly in the 
formulation) are 

ax -- 
ab, 0 3 )  - - c, [ 1 - (1 - $)"I (745) 

where the reception time t3 is expressed as seconds past 
the start of the time block for a, b, and c used at t3. The 
partial derivatives of 2-way or 3-way doppler with respect 
to b, and cT used at tl (and appearing explicitly in the 
formulation) are 



where the transmission time t, is expressed as seconds past 
the start of the time block for a, b, and c used at t,. 

For 2-way doppler, the transmitting station is also the 
receiving station and the same set of coefficients a, by and c 
is usually used at t3 and t,. For this case, bE (t3) is the same 
parameter as bT(tl) and aF2/ab is the s u m  of Eqs. (745) 
and (747), which is zero. However, from 
(748), a~2/ac f: 0. 

olynomial coeficients ~f~~~ fTly and fTz of Baay 
transmitter frequency. The transmitter frequency 

for 1-way doppler is represented by Eq. (277), where the 
solve-for coefficients A ~ T ~ ,  fT,, and fT2 are specified by time 

om Eqs. (277) and (308), the partial derivatives 
of 1-way doppler (Fl) with respect to the specific coeffi- 
cients used to compute the observable are 

(749) -- aF1 --cz[l-(l-gy] 
aAfTo 

a m  aF1 - = (tz - to) - 
afT1 aAfTo 

aF1 aF1 
(tz - t 0 I 2  - -= 

afTz aAfTo 

where tz and to are defined after Eq. (277). 

(750) 

(751) 

otations T ' ~  ey p' or 7, e, 6 of reference coordinate 
system for angular observables. Eqs. (437), (439) and 
(443-448) give corrections to the computed values of the 
directly observed angles as linear functions of the small 
rotations of the reference coordinate system about each of 
its three mutually perpendicular axes. The coefficients of 
the rotations in each equation are the partial derivatives 
of the angular observable with respect to the rotations 
affecting it. 

ange observables are computed from Eq. (379) of S e c -  
tion IX. The partial derivative of a range observable p with 
respect to the solve-for parameter vector q is the s u m  of 
the several terms given below. 

The s u m  of the first four terms of Eq. (379) is an 
accurate expression for the round-trip ephemeris time: 
t3 (ET) - tl (ET). The terms rlz/c and T23/c of t3(ET) - 
t,  (ET) vary directly with q and also indirectly with the 
resulting variations in &(ET) and t,(ET). The partial 
derivative of p with respect to q due to both of these 
effects is given by 

(753) 

where at, (ET)/aq is computed from Eqs. (665-667), (671), 
and (672). 

The speed of light c affects the solution of the light time 
problem for the epochs of participation and hence affects 
line 1 of Eq. (379) which represents t3 (ET) - t, (ET). It 
also appears explicitly in line 6 of Eq. (379). However, the 
variations of the terms of Eq. (379) containing the antenna, 
troposphere, and ionosphere corrections due to a variation 
in c are negligible. Thus, 

where atl(ET)/ac is given by Eqs. (719) and (720). For 
normal values of the range bias R,, the second term of 
Eq. (754) is negligible. 

The range observable given by Eq. (379) is the round- 
trip station time t3 (ST) - tl (ST) multiplied by the con- 
version factor F.  The reception time t3 (S 
t, (ST) varies with g. In addition to the partial derivatives 
above, tl (ST) varies with variations in ATlgc8, Afcesium, and 
the polynomial coefficients a, by and c of (UTC - ST) in 
the light time solution. The variations of t, (Al),  t, (UTl), 

of ~ 2 ; ~ ~ ~  and 
Afcesium in the light time solution are identical. Hence, 

From Eqs. (308310), (343), and (344), the partial deriva- 

explicitly in the formulation is given by 
tive of a doppler observable with respect to Y appearing t, (U C), and tl(ST) due to 

from Eqs. (735) and (736), 
(452) 

a x  P8 

aY 
-- - - Cs>(elZ + %3) 

where e,, is omitted for 1-way doppler. 



(7556) 
1 t 3  - 252,460,800 c (" -k 9,192,631,770 

From Eqs. (94) and (354), the partial derivatives of 
t,(ST) with respect to the polynomial coefficients a, by 
and c of (UTC - ST) used at t3 in the light time solution 
are given by 

(757) 

where t3 is the reception time of the signal measured in 
seconds past the start of the time block for a, by and c con- 
taining t3. Since 

tl (ST) = t1 (ET) - (ET - Al)t, - (A1 - UTC)t, 

- (UTC - ST),, (760) 

the partial derivatives of tl (ST) with respect to the poly- 
nomial coefficients a, b, and c used at tl in the light time 
solution are given by 

where tl is the transmission time of the signal measured 
in seconds past the start of the time block for a, by and c 
containing t,. In general, t3 and tl will fall within the same 
time block, so that the partial derivatives given by 
Eqs. (757-759) are associated with the same parameters 
as those in Eqs. (761-463). 

etting p i  =  AT^^^^, Afcesium, or a, by and c used at 
and t,, ap/api due to a variation of p i  in the time trans- 
formations of the light time solution is given by 

where at, (ST)/api is given by Eqs. (755-759) and (761- 
763). 

The partial derivative of p with respect to R, is given by 

(765) 

The partial derivative of p with respect to the parameter 
y of the Brans-Dicke theory of relativity appearing ex- 
plicitly in Eq. (379) is 

The partial derivative ap/aq for range observables is 
computed as the sum of the terms given above, where each 
term ap/aqi must be placed in the proper column of ap/a 

ler 

From Eqs. (484-486), the partial derivatives of 1-way, 
e-way, and 3-way differenced-range doppler ob 
with respect to the estimated parameter vect 
given by 

- aF3 -- 

Thus, the partial derivative of a differenced-range doppler 
observable with respect to is computed from the differ- 
ence of the partial derivatives of the two range observ- 
ables with respect to g. The subscripts e and s denote &e 
range observables whose reception times are the end and 
start, respectively, of the count interval T,. The partial 
derivatives of F1 with respect to AfTo, fT1, and fTz appear- 
ing in the second term of Eq. (484) and in fnIcr in the first 



term must be added to 
Eqs. (749-751) with the term [l - (FR/FT)]*  replaced by 
UPl,  - Pls)/TC (c0mputed)l. 

). They are given 769). Since the (z,/c), terms are omitted, az/a 
accurate to (18 - N o )  - (10 - W,) or 8 + N, - N o  deci- 
mal digits. 

The partial derivatives of the DPODP 2-way range ob- 
servables with respect to (excluding R,) are given by 
Eqs. (753-759), (761-764), nd (766). These equations are 
used to compute the partial derivatives of pze and pZ8 with 
respect to q in Eq. (768); however, from Eqs. (379) and 
(469), the factor F in Eqs. (753), (754), (764), and (766) 
must be set equal to unity. 

‘when the light time solutions for pi, and pi8 are similar, 
the (O/C)~, (u/c)l, and (v/c), terms of ap+,/aqwiU be similar 
to those of api,/ag; the parameters No,  W1, and N ,  will be 
nonzero and should be approximately equal to each other. 

nce, 8 + N ,  - N o  z 8 and the partial derivatives 

computed from Eqs. (767-769) should be accurate to 
approximately the 8-decimal-digit accuracy of ap+,/aq and 

ced-range doppler observables with respect to 

These equations are also used to compute the partial 
derivatives of p3, and p3g with respect to g in Eq. (769). 

owever, it must be remembered that the coefficients a, b, 
and c used at t3 are not the same parameters as those used 
at tl; for two-way range, the same parameters are usually 
used at both tl and t3. 

In order to compute the partial derivatives of ple and pls 
with respect to g in Eq. (767), the following additional 
changes are necessary. In Eq. (753), atl(ET)/aq com- 
puted from Eqs. (671) and (672) should be replaced by 
at,(ET)/aq from Eq. (671). Similarly, in Eq. (754), 
at, (ET)/& computed from Eqs. (719) and (720) should 
be replaced by at, (ET)/ac from Eq. (719); also, set R, = 0. 
In Eqs. (755) and (756), ez should be deleted. Also in 
Eq. (756), replace tl by t,. Similarly, ;12 should be deleted 
in Eqs. (757-759). Equations (761-763) do not apply for 
pl. Thus, Eq. (764) is used to compute partial derivatives 
of pl with respect to ATl968, Afcesium, and a, b, and c used 
at t3. In Eq. (766), the first natural logarithm term should 
be deleted. 

The principal terms of api,/ag and api,/ 
i = 1, 2, or 3) in Eqs. (767-769) are comp 
Eq. (753), which contains terms of relative order (v/c)O 
and (u/c)l, where z, is the tracking-station-to-spacecraft 
range-rate. Since u/c and terms of relative order 
(V/C)~  have been ignored, api,/a and api,/ag are accurate 
to about eight significant figures. 

Let No, N1, and N ,  denote the number of leading digits 
of the (z,/c)O, (v/c)l, and the omitted (u/c), terms, respec- 

are identical to the corresponding 
e Univac 1108 computer, 

word length of 18 decimal 
and (u/c), terms of ap+ 

Ute 18 - N o ,  14 
- N ,  significant digits, respectively, to the partial 

derivatives of differenced-range doppler observables 
) computed from Eqs. ( 

However, in order to obtain this accuracy, no more than 
the first 10 digits of api,/aq may equal those of ap+,/ag; 
that is, No must not exceed 10. In order to obtain this much 
cancellation, the count time T, would have to be 0.01 s or 
smaller, which is an order of magnitude below the prob- 
able lower limit of 0.1 s for usable count times. 

The probable accuracy of 8 decimal digits (or close to 
it) for the partial derivatives of differenced-range doppler 
observables with respect to q compares favorably with 
the accuracy of the integrated doppler partial derivatives: 
8 decimal digits in heliocentric cruise and 4 decimal digits 
near earth (see Subsection XIV-B-1). 

This section gives the normal-equations form of the esti- 
mation formulas which yield the estimate of the parameter 
vector q and the statistics of the estimate; namely, the 
covariance matrix for q. This fo n was used in the 
original version of the DPODP 
placed by the square-root 
in the latest version of 
formulation is theoretica 
equations formulation 
documented in Section 

s numerically superioc it is 

The estimate for q minimizes the s u m  of weighted 
squares of residual errors between observed and com- 
puted quantities where a priori parameter estimates are 
treated as observed quantities. The parameter vector g is 
partitioned into a “solve-for” parameter vector x and sa 
“consider” parameter vector y. The values of the solve-for 
parameters are adjusted to minimize the sum of squares. 
The a priori estimates of the consider parameters are not 



changed; however, the effects of errors in the consider 
parameters on the estimates of the solve-for parameters 
are %onsidered” when computing the covariance matrix 
for the solve-for parameters. 

A given quantity of tracking data can be processed in 
one batch or divided into a number of sub-batches which 
are processed sequentially. That is, processing of the first 
batch yields an estimate of the parameter vector q and a 
corresponding covariance matrix, which are used as a 
p r b i  information for processing the second batch, etc. 
As currently programmed, -processing of each sub-batch 
requires a separate run of the DPODP. The one-batch 
solution is identical to the multiple sub-batch solution 
using the formulation of this section (or the equivalent 
formulation of Section XVI). 

When the a priori covariance matrix is not obtained 
from a previous reduction of tracking data, the a p&wi 
cross-cyariance between solve-for and consider param- 
eters (Fey) must be zero. After a batch of tracking data is 
processed, the cross-covariance between the estimate of 
the solve-for parameters and the consider parameters is 
computed and used as a priori information for processing 
the next batch of data. 

There may be functional relations (constraints) between 
the members of . These constraints may be applied by 
an exact procedure or an inexact procedure. For the exact 
treatment, the estimates of the parameters related by the 
constraint are required to satisfy the constraint. For the 
inexact treatment, the estimates of the parameters related 
by the Constraint are allowed to deviate from values that 
would satisfy the constraint. This deviation contributes a 
weighted residual error to the sum of squares, which is 
minimized by the parameter estimate. 

The formulation is given for mapping the covariance 
matrix from the injection epoch to any other epoch. The 
parameter vector corresponding to the mapped covariance 
matrix is q, with the injection position and velocity com- 
ponents (referred to a selected body, not necessarily the 
center of integration) replaced by the position and veloc- 
ity components relative to the center of integration or any 
other specified body (planet, moon, or sun) at the map 
time. Frequently, the covariance matrix computed after 
processing a batch of data is mapped to a new epoch and 
used as a priori information for processing the next batch 
of data. The position and velocity components of the 
spacecraft at the new epoch (the solve-for injection condi- 
tions for processing the next batch of data) may be re- 

ferred to a different body than that used for the previous 
batch of data. 

The formulation of this section is a variation of the 
formulation originally derived by J. D. Anderson and 
used in the Single-Precision Orbit Determination Pro- 
gram (SPODP)32. The DPODP formulation was obtained 
from Anderson’s formulation by adding the a priori cor- 
relation between solve-for and consider parameters and a 
method of treating inexact constraints. The formulation of 
this section includes a modification recently obtained by 
C. F. Peters33 and is equivalent to the square-root formu- 
lation of Section XVI. The DPODP formulation does not 
contain Peters’ modification and is documented in Ref. 62; 
it follows from the derivation of this section if the zero 
residual (7 - y) is deleted from the residual vector 
by Eq. (780). 

Peters’ modification does not affect the parameter esti- 
mate and associated covariance matrix obtained from 
processing one batch of tracking data if FEY = 0. However, 
his modification is required in order to obtain the correct 
estimate when processing the tracking data sequentially 
in batches. 

The parameter vector q consists of those parameters 
required to compute observable quantities; it is composed 
of three subvectors : 

=E] (770) 

where 

x = solve-for parameters: those parameters whose esti- 
mates are obtained from the least squares fit 

y = “consider” Parameters: those whose a priori esti- 
mates are not corrected, but whose errors are 
considered when computing the covariance matrix 
for 

s = exactly “constrained” parameters: parameters that 
are functionally related to the (x I y) parameters; 
one parameter from each exact constraint is placed 
in s 

32A simplified version of his formulation without consider param- 
eters and exact constraints is given in Ref. 61. 

33Peters, C. F., The Consider Option Reconsidered, JPL Section 391 
Technical Memorandum 86 (JPL Internal Report), Mar. 27,1970. 
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The parameter estimation formulation allows con- 
straints (functional relations between the parameters) to 
be treated as exact or inexact. A constraint may be repre- 
sented by 

i=1 ,2 ,  * * * ,n  (771) 

= vector of constants which appear in the itIh 
A constraint is considered to be exact or in- 

i is considered to be exact or inexact. Estimates 
for parameters related by a constraint that is considered 
to be exact are required to satisfy the constraint. Esti- 
mates for parameters related by a constraint that is con- 
sidered to be inexact are allowed to deviate from values 
that would satisfy the constraint. 

One parameter from each exact constraint is designated 
as a constrained parameter and is placed in s. The exactly 
constrained parameter vector is given by 

s = s(x,y) = 

where si (x, y) represents the solution of the ith exact con- 
straint for the constrained parameter as a function of the 
estimates of the related parameters of the constraint. The 
derivative of s with respect to (X f Y) is denoted by 

. . .  

= [ s, i S,] (773) 

The ith exact constraint may be specified as either of the 
following: 

(1) The functional relation si = si (x, y), in which case 
the a priori value of si is si e,?), where j3 is the 
a priori estimate of x. 

(2) The derivative of the constrained parameter with 
respect to each related parameter of the constraint; 
i.e., specdying the ith row of Eq. (773). In this case, 
the a priori value of si must be given. 

As opposed to the exact treatment of constraints, an 
parameters related by an inexact constraint are members 

; y). One parameter from each inexact constraint is 
designated a constrained parameter and will have a “com- 
puted” value and an “observed” value. The computed 
value is the estimate for the parameter; the observed 
value is calculated from the constraint as a function of 
the estimates of the related parameters. Since parameter 
estimates are obtained by minimizing weighted squares 
of residual errors between observed and computed quan- 
tities, the degree to which each inexact constraint is satis- 
fied will depend upon the weight applied to the constraint 
(see Section XV-C). 

The observed inexactly constrained parameter vector is 
given by 

where ci (x, y) represents the solution of the ith inexact 
constraining equation for the constrained parameter as a 
function of the estimates of the related parameters of the 
constraint. For a given constraint, the functions si (x, y) of 
Eq. (772) and ci (x, y) of Eq. (774) are the same. The sym- 
bol used depends on whether the constraint is treated as 
exact or inexact. 

The computed inexactly constrained parameter vector 
is given by 

The element of the ith row of [DL I Oh] corresponding to 
the member of (x I y) which is the constrained parameter 
for the ith inexact constraint is unity, and the remaining 
elements of that row are zero. 

7 



The derivative of c(x,y) with respect to (x I y) is 
denoted by 

From Eq. (775), 

The differences of the matrices in Eqs. (776) and (774) are 
denoted by 

AD, = DI, - D, (778) 

AD, = 0: - D, (779) 

There are two constraints stored within the DPODP: 
they are the so-called solar and lunar constraints described 
in Subsection IV-B-2. The user specifies whether each of 
these constraints is to be applied, and also specifies the 
exact or inexact treatment. The user may also apply exact 
constraints by supplying the information listed under 
item 2 after Eq. (773). 

a column vector containing all of the 
observed minus computed residuals associated with the 
processing of one batch of data: 

where 

2 = column vector of observables (doppler, range, 

z = z (x, y, s) = z (x, y) = vector of computed 

x - column vector of a p M  estimates of solve-for 

y - column vector of a priori estimates of consider 

x = column vector of estimated values of solve-for 

angles, etc.) 

observables -- 
parameters 

parameters 
-- 

parameters 

y = column vector of estimated values of consider 
parameters 

In addition to the actual observed quantities which pro- 
duce the residuals $ - z, the a priori estimates of the 
solve-for parameters are treated as observables and pro- 
duce the residuals ? - x. The zero residuals 7 - y are 
retained in Eq. (780) because the estimates 2 and 7 are 
correlated; this will become clear below. Also, Eq. (780) 
contains the residual between the “observed” and “com- 
puted” values of the constrained parameter for each 
inexact constraint. The sum of weighted squares of resid- 
ual errors between observed and computed quantities is 
given by 

where the weighting matrix WT is given by 

WT 

where 

0 o o w ,  

W = data weighting matrix (diagonal); the weight for 
each observable is 1 divided by the input vari- 
ance for the observable - r, = covariance matrix for E 

r, = covariance matrix for 7 
r,, = cross-covariance matrix for Z and 7 
W, = diagonal weighting matrix for inexact constraints 

- 

W, = 

. . . . . . . . . . .  0 0 

0 

1 
U2G (x, Y) 

. . . . . . . . . . . . . . . . . . . . .  
1 . . . . . . . . . . .  0 0 

U2Cn (x, Y) 



where a2ci (x, y) is the input variance of ci (x, y) calculated 
from the variances and covariances of the constants 4 

of the ith inexact constraining equation and the a priori 
estimates of x and y. In Eq. (782), the inverse of the co- 

It will be seen that only W, is required. can be obtained 
by inverting the complete covariance matrix for (Z j 7) or 
from 

variance matrix for (ji I 9 is denoted by w, = [F, - Fw F;q/]-l (785) 

wx IWX, 
(784) Substituting Eqs. (780), (782), and (784) into Eq. (481) and 

deleting all terms containing the zero residual - y gives w q  w, 

Q=(&z)TW(ZA-z) +(ji-x)’W,(%-x) + [C(X,y)-c(”Y)]TW,[e(X,y)--(X~Y)] (786) 

Since s = s (x, y) and y = constant, the sum of squares Q is a function of x only: 

Q = Q (4 

The estimate of x is the vector that minimizes Q. If Q is a minimum, 

From Eq. (786), 

(789) 
az ac(=) ac (x, y)] aQ - - 2 (B - z)TW- + (a- X)’W, + [c(x,y) - c(~~Y)]T w, [r-- = O  t ax ax 

-- 
ax 

The partial derivative of z with respect to q is designated the A matrix: 

ut s = s (x, y) and hence, using Eq. ( 

a2 

ax - = A, + ASS, 

Similarly (for use in computing the covariance matrix for 

Substituting Eqs. (746-778) and (791) into Eq. (789) gives 

(B - z ) ~  W (A, + A,S,) + (Z - x)’ Wx + [C (x, y) - d x 9 Y ) l T  , = o  
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which is a row vector with the number of elements equal 
to the number of solve-for parameters. Let the transpose 
of this vector (a column vector) be denoted by F (x): 

= (A, + A.,s,)~ w (2 - Z) + w, (;T - X) 
+ AB: w, [e (x, y) - dx3Y)] = 0 (794) 

The estimate of the solve-for parameter vector x must 
satisfy this equation. Assuming the partial derivatives are 
constant, the derivative of F (x) with respect to x is 

-- aF (') =I?'(.) = - [(A, + W (A, + A$,) + W, 

-k AD; w, ABZ] (795) 
ax 

Defining 

J = (An + W (Ax + Ass,) 
and 

K = AD; W, AB, 

Eq. (795) becomes 

F'(x) - [J + W, -I- K] (498) 

The solution of Eq. (794) for the estimate of x is obtained 
by using Newton-Raphson iteration: 

where x(") is the nth estimate of x, and x("+l) is the n + 1st estimate. Substituting Eqs. (794) and (798) into Eq. (799) 
gives the parameter estimation formula 

For exact constraints specified by a functional relation, 

> 71 (801) s(n+l) = si [X(n+l) 

where a bar indicates the ensemble average or expected 
value of the function. This may be written as 

a 

For exact constraints specified by a row of Eq. (773) and 
the a priori estimate of the exactly constrained parameter, 

where SXi is the ith row of S,. 

If the true value of the solve-for parameter vector x 
were substituted into the parameter estimation formula trix & 

(Eq. 800) along with true values for f, 7, ;T, and the con- 
stants in the inexact constraints, we would have 

This section gives the formulation for computation of 
the covariance matrix rQ for the estimate of the parameter 

. Let the error in an estimate of q be denoted by 

where Sy = SY, the a priori error. Then, the covariance 
matrix is given by 

and %("+I) would equal x ( ~ ) ,  the input true value. 
ever, the vectors 4, iT, and 7 are in error by Si, 82, a 
and the errors in the constants of the inexact constraints 
give an error in e (x, y) of Sex. Substituting the true value 

rq = (804) 
I l - - - -  

-1-1 

SSSXT ; SsSyT S s S s T  
- - - -  
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of x into Eq. (800) and using qs. (776), (777), (779) and (792) gives an erroneous correction 6x = x("+I) - x("), which is 
the error of the estimate: 

Sx = [J + W, + KI-1 {(A, + W [Si?. - (A, + ASS,) 671 + W, 8% + AD: W, [SC, - AD, 671) (806) 

(809) 

(808) 

Let 

L = (A, + AIS,)T W (A, + ASS,) + AD; W, AD, 

Then 

= [J + Wx + K1-l [(A, + W 6k + Wx 61 - LS? + AD: W, S C ~ ]  

In order to derive the submatrices of Eq. (805), the assumption is made that the data covariance matrix r, is the inverse 
of the data weighting matrix: 

Also, from the definition of the weighting matrix W, for inexact constraints, 

Postmultiplying Eq. (808) by its transpose and averaging, using Eqs. (809) and ( N O ) ,  gives 

Substituting this into Eq. (811) gives 

Postmultiplying Eq. (808) by SyT and averaging gives Postmultiplying 6x and 6 y  by 6sT and averaging gives 

(818) 

changed, r,, = r& S i  + r, S i  (819) 

r,, = [I + W, + 1x14 [w,FX, - L?,] (814) r,, = r,S; + rWS; 
Since the estimate of the consider parameters is not 

r, = F, (815) 
e covariance matrix for g is evaluated from Eq. (805) 

e remaining submatrices of Eq* (805) me r ~ 7  and using the submatrices given by Eqs. (813815) and (817- 
Eqs. (772) and (773), 819). 

The foIlowing paragraphs relate the various terms of 
Eq. (813) for r, to the various error sources which affect 
the estimates of the solve-for parameters obtained from 

6s = S X S X  + S,Sy (816) 

Postmultiplying 6s by SsT and averaging gives 

rs = S,r,S: + S,r,S; + Sxr,,S,T + S,r& S; (817') Eq. (800). 



If the a priori parameter estimate and covariance matrix 
are not obtained by processing previous batches of data, 
rxu must be zero. For this case, Eq. (785) gives 
- 

w, = F;l 

Substituting this and ?;,, = 0 into Eqs. (813) and (814) 
gives 

r, = [ J  + -t- K ] - 1  

+ [ J  + Fj1 + K]-* [L?;,LT] [ J  + F;1 + K]-’ 
(820) 

and 

The contributions to r. from the information matrix J,  the 
a priori covariance matrix F,, and the matrix K in the first 
term of Eq. (820) account for errors in the tracking data 
being processed, errors in the a priori parameter estimate, 
and errors in the constants of the inexact constraints ap- 
plied to the solution. The second term of Eq. (820) ac- 
counts for the effect on the estimate of errors in the 
consider parameters. 

The complete expression of Eq. (820) is referred to as 
the consider covariance matrix since errors in the “con- 
sider” parameters are considered. The first term is referred 
to as the nonconsider covariance matrix rxNc: 

Using Eqs. (821) and (822), Eq. (820) may be expressed as 

For the case where the tracking data are processed 
sequentially in batches, r, and r,, are computed from 
Eqs. (813) and (814) after processing each batch of data 
and are used as a pori information for processing the 
next batch of data.34 It can be shown that r, and r,, 
obtained after processing the last batch of data are iden- 
tical to the results that would be obtained from Eqs. (820) 
and (821) if all of the data were processed in one 
The equality of Eqs. (813) and (820) applies to each term. 

340ften, I?, and r,, are mapped to a new epoch (see Section XV-F) 
and then used as a priori information for the next batch of data. 

35The constraint weighting matrix W, (and hence K) used to process 
each batch of data is different from the matrix W, (and hence K) 
required to process all of the data in one batch. 

ence, the first term of Eq. (813) is the nonconsider 
covariance matrix: 

rxNc = [ J  + W, + R1-I 

The information matrix J accounts for the errors in the 
current batch of data. The matrix K accounts for errors 
in the constants of the inexact constraints applied to the 
processing of the current batch of data. If the current 
batch contained no data, J and K would be zero and rxNc 
would equal its a priori value FxNc, giving the relation 

FXN0 = W;l 

Thus, the quantity W, is the inverse of the a priori 
nonconsider covariance matrix. It accounts for errors in 
previously reduced batches of data, errors in the constants 
of the inexact constraints applied to each previous batch 
reduction of data, and the input errors for the initial esti- 
mates of the solve-for parameters (prior to reduction of 
the first batch of data). 

The second term of Eq. (813) contains a sum of four 
terms. The first of these, namely WxYw i?;lF&WxJ ac- 
counts for the effects of errors in the consider parameters 
on the previous batch reductions of data. The remaining 
three terms of the sum contain the matrix L and account 
for the effects of errors in the consider parameters on the 
reduction of the current batch of data. 

Equation (813) for r, may be expressed as Eq. (823) 
using r,,, given by Eq. (824) and rxu given by Eq. (814). 
Equation (823) also applies for the previous batch of data; 
that is, 

Substituting Fx from Eq. (826) into Eq. (785) for W, gives 
the result that 

(827) 
- 

W, = r;;, 

which is identical to 

The sensitivity matrix S,, is defined as 

ax s -- 
xu - ay 

That is, S,, is the partial derivative of the estimate of the 
solve-for parameter vector with respect to the consider 
parameter vector. The sensitivity matrix is a very useful 
quantity since it relates errors in the consider parameters 
to errors in the estimates of the solve-for parameters. 



The error 6x in the estimate of the solve-for parameter whether the map epoch is specified in the ET time scale 
or in another time scale (Al, UTC, UT1, or ST). vector is given by 

The dots represent the contributions due to errors in the 
processed observables, errors in the a priori estimates of 
the solve-for parameters (uncorrelated with 87 since 
r,, = 0 prior to processing observables), and errors in 
the constants of the inexact constraints. Since these errors 
are uncorrelated with 67, postmultiplication of Eq. (829) 
by 6F and averaging gives 

u 

Substituting r,, given by Eq. (814) gives 

s,, = [ J  + w, + K]-l[W,Fx, F;1 - L]  

If F,, = 0, 

ed cooariance matrix r e b  
gration. The solve-for 
as qo in this section. 
the covariance matrix to a new epoch, dividing the param- 
eters into the solve-for, consider, and exactly constrained 
categories is inappropriate. The appropriate categories are 

= spacecraft state vector (1950.0 earth equatorial 
rectangular position and velocity components) at 
injection epoch to (specified in a time scale other 
than ephemeris time ET) relative to a specifred 
body B which is not necessarily the center of inte- 
gration at to 

a = all parameters that affect the spacecraft state 
vector X relative to the center of integration C 
(except X:) 

= all parameters that affect observables but do not 
affect X 

s,, = -[I + F;1 + K]-1 L (833) 

For a given amount of tracking data processed sequen- 
tially in batches, the sensitivity matrix is computed from 
Eq. (832) after processing the last batch. If this same 
amount of tracking data is processed in one batch, FZg = 0 
before processing data and S ,  is computed from Eq. (833). 
It can be shown that these two sensitivity matrices are 
identical. 

Thus, the solve-for parameter vector go is given by 

(836) 

where the second form of the vector is obtained from the 
first by reordering the elements. 

The consider covariance matrix (Eq. 813) can be ex- 
pressed as Eq. (823), which is identical to 

The mapped parameter vector relative to the center of 
integration C at the map time is denoted by r, = rZNc + (r, ? ; I )  F', (F;ir&) (834) 

Substituting Eq. (831) gives 

This section gives the formulation for mapping the 
covariance matrix for the parameter vector 
injection epoch to any other epoch. Subsection XV-F-1 
gives the mapped covariance matrix relative to the center 
of integration at the map time. Subsection XV-F-2 gives 
the covariance matrix relative to any specified body other 
than the center of integration at the map time. There is 
a slight difference in either formulation, depending on 

where 

= spacecraft state vector relative to center of integra- 
tion C at map time. 

The mapped covariance matrix r; relative to the center 
of integration at the map time corresponds to the mapped 
parameter vector 

e 117 



The injection covariance matrix is given by Eq. (805). 
eordering the rows and columns and partitioning ac- 

cording to the second vector of Eq. (836) gives, suppress- 
ing the subscript and superscript on 

c I 

The state vector of the spacecraft relative to the center 
of integration is a function of ET and the parameter vec- 

The variation in at an ET epoch is given by 

where the U and V matrices are obtained from the solu- 
tion of the variational equations (see Section XIII-A). If 
the epoch is specilied in a time scale other than ET (ie., 
Al, UTC, UT1, or ST), the variation in X is 

+ V S ~  + XSET (841) 

where, from Eq. (93), 

Thus, Eq. (841) may be written as 

(843) 

where V* is the V matrix with the  AT^^^^ column incre- 
mented by 

and the Afcesium column incremented by 

- 
9,l92,63l,T7Q 

is evaluated at the map epoch t. 

Using Eq. (840), the variation of qc at an ET map epoch 
due to a variation in go is given by 

where 0 and I represent null and identity matrices. The 
variation of q" at a map epoch specjfied in a time scale 
other than ET is given by Eq. (844) with V replaced by V*. 

Substituting Eq. (838) and M from Eq. (844) into Eq. (845) gives 

Using Eq. (844), the mapped covariance matrix for 
is given by 

This matrix may be simplified by using the following combined submatrices of Eq. (838): 

rX ,ub  [ r X u  r X b ]  

ra,ub [ru { r u b ]  

h P  e 3 



With these definitions, Eq. (846) simplifies to 

This equation gives the mapped covariance matrix relative 
to the center of integration for an ET map epoch. If the 
map epoch is specified in any other time scale, Eq. (850) 
is used with the V matrix replaced by the V* matrix. 

2. ed covariance matrix rehtive to body othw 
than center of integration. The mapped parameter vector 
relative to the center of integration at the map time is 
given by Eq. (837). The mapped parameter vector rela- 
tive to a body R other than the center of integration at 
the map time is given by 

where 

XB = spacecraft state vector relative to body R at map 

Xg = state vector of body R relative to center of inte- 

time 

gration C at map time 

The variation in X is given by Eq. (840) for an ET map 
epoch and by Eq. (841) or (843) for a non-ET map epoch 
(epoch specified in the Al, UTC, UT1, or ST time scale). 
Since ET is the independent variable for the spacecraft 
ephemeris and the precomputed n-body ephemerides, the 
state vector Xg is a function of ET and the dynamic 
parameters a: 

owever, the dependence upon a is limited to the refer- 
ence parameters: A H ,  RE, E for each prec 
eris, ,uE and pM. The variation in 
is given bys6 

36The partial derivatives are computed as indicated in Subsection 
XIII-D-2. 

For a non-ET map epoch, 

(854) 
ax: 
aa 

SXg = - Sa + Xg SET 

where SET is given by Eq. (842). Thus, for an ET map 
epoch, 

For a non-ET map epoch, 

where SET is given by Eq. (842). 

A comparison of Eq. (855) to Eq. (840) and of Eq. (856) 
to Eqs. (841) and (843) shows that the mapped covariance 
matrix relative to a body R other than the center of inte- 
gration C at the map time can be computed from Eq. (850) 
by using a modified V matrix. For an ET map epoch, the 
matrix V is replaced by 

For a non-ET map epoch, the matrix V is replaced, by 

where V* is computed*as i 

S/C refers to the spacecraft. 
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This section gives the square-root formulation of the 
rmulas which yield the estimate of the param- 
and the statistics of the estimate; namely, the 

covariance matrix for q. The square-root formulation is 
used in the latest version of the DPODP; it replaces the 
normal-equations formulation of the estimation formulas 
(Section XV) used in the original version of the program. 

singular-value decomposition method of inverting 
also the alternative “mass below the diagonal” technique. 
Also, the partial-step algorithm for obtaining the param- 
eter estimate in the presence of significant nonlinearities 
is given; this algorithm was originated by D. Boggs.4l The 
formulation for the covariance matrix of the parameter 
estimate is given in Section XVI-C. Section XVI-D gives 
the formulation for mapping the square root of the co- 
variance matrix (or its inverse) from the injection epoch 
to any other epoch. 

The square-root formulation is theoretically equivalent 
to the normal-equations method but is numerically supe- 
rior. The normal-equations formulation requires the in- 
verse of the normal n ~ ~ t r i x  ATWA (see &ction XV), which 
is frequently ill-conditioned and iduenced greatly by 
round-off errors. Instead of forming ATWA, the square- 
root formulation utilizes Householder transformations to 
convert the A matrix to the triangular matrix R, whose 
order is the same as that of ATWA. To obtain the param- 
eter estimate requires the inversion of R rather than that 

root of the condition number of ATWA, the inverse of R 
can be obtained with less numerical error than the in- 
verse of ATWA. This is the primary advantage of the 
square-root formulation. 

The parameter estimation formula is derived in Sub- 
section XVI-B-1. Three different numerical techniques for 
evaluating this equation are given in Subsection XVI-B-2. 

1. Equations. The parameter vector q is given by 

of ATWA. Since the condition number3‘ of R is the square .=[;I (857) 

where 

x = solve-for parameter vector. The estimates of these 
parameters are obtained from the least-squares fit. 

Y = “consider” parameter vector. The a priori estimates 
of these parameters are not corrected. However, 
the errors in these parameters are considered when 
computing the covariance matrix for the solve-for 
parameters. 

The superior numerical techniques of the square-root 
formulation were first applied to the linear least-squares 
problem by R. J. Hanson and C. L. L a w ~ o n ~ ~  (Ref. 1). 
Using these techniques, the DPODP square root formula- 
tion was written by P. Dyer39 (Ref. 63); however, many of 
the details are due to T. Starbird.*O 

Section XV-A applies also to this section. However, the 
application of constraints to the parameter estimate is 
limited to the “solar” and “lunar” constraints (described 
in Subsection IV-B-2), treated as exact constraints. The 
treatment of these constraints as inexact relations between 
the estimated parameters has been discontinued along 
with the user input differential exact constraints (see 
item 2 after Eq. 773). 

The user may specify that the parameter estimate must 
satisfy the solar constraint (Eq. 104) and/or the lunar con- 
straint (Eq. 107). The solar constraint relates the gravita- 
tional constant of the sun pLs and the scaling factor AB for 
the heliocentric ephemerides of the planets and the earth- 
moon barycenter. The lunar constraint relates the gravita- 
tional constants of the earth and moon, pE and px, and the 
scaling factor RE for the geocentric lunar ephemeris. 

41Boggs, D., “The Partial-Step Estimation Algorithms and Their 
Application to Mariner ’71”, pp. 4-74 to 4-90 of Project Document 
610-33, Preliminary Orbit Determination Strategy and Accuracy, 
Mariner Mars 1971, Ed. by S. K. Wong and G. W. Reynolds (JPL 
Internal Report), Aug. 15, 1970. 

3TRatio of largest to smallest singular value. 
38JPL Computation and Analysis Section. 
39Formerly, JPL Tracking and Orbit Determination Section. 
*°Formerly, JPL Flight Operations and DSN Programming Section. 
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the constraint. This is accomplished by designating one 
parameter from each applied constraint as a constrained 
parameter which is placed in the exactly constrained pa- 
rameter vector s given by Eq. (772). In the square-root 
formulation, the number n of exactly constrained param- 
eters can be 0, 1, or 2. The quantity si (x, y) represents the 
solution of the ith exact constraint for the estimate of the 
constrained parameter as a function of the estimates of 
the related parameters of the constraint. If the lunar con- 
straint is labeled as the first constraint and if RE is desig- 
nated as the constrained parameter, then s1 (x, y) is the 
estimate of RE, which is equal to the right-hand side of 
Eq. (107) computed from the estimates of pE and pH, 
which are members of q given by Eq. (857). 

Application of an exact constraint replaces the con- 
strained parameter, wherever it appears in the DPODP 
formulation, by a function of the related parameters of 
the constraint, namely si (x, y). For instance, applica- 
tion of the lunar constraint with RE as the constrained 
parameter replaces RE by 86.3135017 (p8 + pH)%. Hence, 
specifkation of the constraints to be applied and the cor- 
responding constrained parameters effectively eliminates 
the constrained parameters from the formulation. As a 
result, the constrained parameters are not included in the 
parameter vector q given by Eq. (857), and the elements 
of q are independent parameters. 

denote a column vector containing all of the 
observed minus computed residuals associated with the 
processing of one batch of data: 

where 

ẑ  = column vector of observables (doppler, range, 

z = z (x, y) = column vector of computed observables 

x - column vector of a priori estimates of solve-for 

y = column vector of a priori estimates of consider 

angles, etc.) 

-- 
parameters - 
parameters 

x = column vector of 
parameters 

parameters = 7 
J = column vector of 

P 

estimated values of solve-for 

estimated values of consider 

The zero residual vector 7 - y is retained because the 
estimates 5Z and 7 are correlated. The sum of weighted 
squares of residual errors between observed and com- 
puted quantities is given by 

(859) 

The weighting matrix WT is given by 

w o  

r w o O 1  

where 

W = data weighting matrix (diagonal); the weight for 
each observable is 1 divided by the input variance 
for the observable 

?;, = covariance matrix for 'iz 

F,, = covariance matrix for 7 
r,, = cross-covariance matrix for 'jT and 7 - 

When the a priori covariance matrix Fg is not obtained 
from a previous reduction of tracking data, F,,, must be 
zero. The matrix W, is given by Eq. (785), repeated here: 

The sum of squares Q given by Eq. (859) is a function of 
the solve-for parameter vector x; the estimate of x is that 
vector which minimizes Q. 

Before proceeding, the square root of a matrix must be 
defined. The relation between a symmetric positive- 
definite matrix M and its square root MU is 

The square root is not unique; the form used in the 
DPQDP is upper triangular. The square root of the in- 
verse is denoted as 



Also, Substituting Eq. (869) into Eq. (868) gives 

The latter form follows since the transpose and inverse 
can always be interchanged. 

Since the parameter estimate minimizes the s u m  of 
squares Q, it also minimizes the square root of Q. From 
Eqs. (859) and (862), 

where the bars indicate the magnitude of the vector 

(866) 

From the &st form of Eq. (860), the square root of WT is 
given by 

Using the partitioned form of Fq from Eq. (860), 

- -  
where W ,  is computed from r,, r,,, and FU using Eq. (861). 

If the a priori parameter estimate is obtained from the 
processing of previous batches of data, Fq and its sub- 
matrices ?,, FGU, and FU are obtained by mapping the co- 
variance matrix obtained from processing the last batch 
of data to the “injection” epoch (the epoch for the solve- 
for spacecraft state vector) for the current batch of data. 
If there is no previous data, F, and Fg are input and F,, 
must be zero. In either case, W, could be computed from 
Eq. (861) and substituted into Eq. (868) to give p, Then 

is given by Eq. (867). 

In the equivalent formulation of Section XV, the quan- 
tity W, was identified as the inverse of the a priori non- 
consider covariance matrix: 

where, from Eq. (826), 

The DPODP computes from Eqs. (867) and (871), 
using the input quantities FZNc, FL, and Fv However, the 
available quantities obtained from processing previous 
batches of data are y,, FaU, and Fw. The required input 
rzNc can be computed, external to the DBODP, from 
Eq. (870). If FXv = 0, FXNc = r,, and no extra calculation 
is required. 

- 
Ir 

The program should be modified so that F@, FXU, and Fv 
are input and is computed from Eqs. (861), (868), and 
(867). Furthermore, the option should be added for map- 
ping ?;% obtained from processing a previous batch of 
data to the “injection” epoch for the current batch of data 
and putting this quantity directly into Eq. (867). The for- 
mulation for mapping ?? is included in Section XVI-D. 

Processing of a batch of data requires several iterations 
of the orbit determination process. For the first itera- 
tion, the initial estimate of the solve-for parameter vector 
x is usually taken to be the a priori estimate T. Given 
x = T and the a priori estimate of the consider parameter 
vector 7 (which is not corrected), the orbit determination 
process consists of computing the spacecraft ephemeris, 
the vector z of computed observables, the observed minus 
computed residual vector $ - z, and the partial deriva- 
tives of z with respect to q. 

Substituting these quantities along with the data weight- 
ing matrix W ,  the a priori estimate %, and the a priori 
covariance matrix Fq into the parameter estimation for- 
mula (to be developed below) gives the differential cor- 
rection 6x to the solve-for parameter vector. Because z 
does not vary linearly with x, the orbit determination 
process is repeated using x + 6x as the initial estimate 
of the solve-for parameter vector. After several iterations, 
the estimate for x will converge and QS given by Eq. (866) 

q. 859) will be minimized. 

Let q given by Eq. (857) be the parameter estimate 
at the beginning of an iteration of the orbit determination 

(9) from Eq. (858) be the corresponding 
residual vector. The differential correction produced by 
the iteration is 
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The correction 6y = 0 since the a priori estimate is not 
corrected. The expected residual after correcting q is 

q) 6q. From Eq. (858), a 

az I az 
ax ; ay 

I I O  

o p  

- I -  

I - - - -  
I 

1 
I _ - - - -  
I 

- - - -  

- I 

(873) 

The partial derivatives and a z p y  account for the 
variations in the exactly constrained parameter vector 
s = s (x, y )  with variations in x and y. However, the 
DPODP computes the partial derivatives of the observ- 
ables with respect to the solve-for, consider, and exactly 
constrained parameters treated as independent variables : 

=A$ (874) 
s fixed 

From Eqs. (772) and (773), 

as -- 
ax =s, 
as 
ay -A -= 

In terms of the quantities above, the desired partial deriv- 
atives are given by 

(879) 
az - = A, + A, S ,  
ZIX 

Substituting into Eq. (873) gives 

The expected value of Q" after correcting q is given by 

An orthogonal matrix P is found such that 

where the matrix R is upper triangular. The dimension n 
is the number of parameters in q, x is the number of solve- 
for parameters, y is the number of consider parameters, 
and x is the number of true observables. The matrix P is 
a product of n Householder orthogonal transformations. 
The formation of P is described in detail in Ref. 1. 

Since P is orthogonal, 

The first term of the vector in Eq. (884) is formed and 
denoted by 

Substituting Eqs. (872), (883), and (885) into Eq. (884) 
gives 

or 

The quantity is minimized if 

62: = R, 6x 

f 



Hence, the parameter estimation formula is given by This expression for Rx is called thesingular-value decom- 
position of the matrix R,. Inverting Eq. (891) gives 

This equation gives the linear differential correction ax 
to the solve-for parameter vector x produced by one itera- 
tion of the orbit determination process. The a priori esti- 
mate 7 of the consider parameter vector is not corrected. 
The exactly constrained parameter vector s is computed 
from x + Sx and 7 using Eq. (772). Evaluation of Sx from 
Eq. (889) requires the computation of W’# from Eq. (867) 
and associated equations, AT from Eq. (881), 
Eq. (858), R, from Eq. (883), and Sz; from Eq. (885). After 
several iterations of the orbit determination process, the 
quantity QS should approach 

2. Numerical techniques. Evaluation of Eq. (889), the 
parameter estimation formula, requires the inverse of 
the upper triangular matrix R,. Subsection XVI-B-2-a 
describes the singular value decomposition method of 
inverting R,. The alternative “mass below the diagonal” 
technique for inverting R, is described in Subsection 
XVI-B-2-b. The partial-step algorithm for obtaining the 
parameter estimate in the presence of significant non- 
linearities is described in Subsection XVI-B-2-c; it is a 
constrained evaluation of Eq. (889). 

a. Singular-value decomposition of R,. The x by x 
matrix42 R, is nearly always of rank x. However, its condi- 
tion number (ratio of largest to smallest singular value) 
is often very large. When this occurs, the product Ril Sz‘, 
in Eq. (889) can greatly magnify errors in the residual 
vector Szl,. The error in the computed differential correc- 
tion Sx can be reduced by using an r-rank approximation 
to R-,l in place of R-,l in Eq. (889). 

The first step is to find x by x orthogonal matrices e7 
and V and a diagonal matrix S such that 

UTRxV = diag (Al, A2, . . . ,A,) = S (890) 

The elements of S are, by definition, the singular values 
of R, ordered from largest to smallest. Solving for R, gives 

R, = USVT (891) 

42The term x represents the number of solve-for parameters. 

Let the ith columns of U and V be denoted by ui and vi, 
respectively. Then 

(893) 

(894) 

Substituting Eqs. (893), (894), and S from Eq. (890) into 
Eq. (892) gives 

X 

(895) 

Substituting Eq. (895) into Eq. (889) gives 

X X 

i =1 i=1 

where the dot indicates a dot product. If a singular value 
is very small, the error in 6x4 due to the error in Szj, can 

be very large. That is, errors in Szl, lying along eigen- 
directions associated with smaller singular values are 
magnified more than error components corresponding to 
larger singular values. The quantities vi, ui, and X i  of 
Eq. (896) are generally computed to a greater accuracy 
(more significant figures) than the components of Sz:; 
hence the errors in these quantities do not contribute 
significantly to Sx. 

In Eq. (889), Ril is replaced by its r-rank approximation, 
which consists of the first r terms of Eq. (895): 

r 

i = l  

(897) 

The integer r is called the pseudorank of the matrix R,. It 
must be chosen so that the error due to truncating the last 
(x - T )  terms of Eq. (895) is less than the error that would 
be incurred by retaining them. The pseudorank T is the 
largest integer such that 



where E is a small input positive number. Equivalently, 
r is the largest integer such that the rank deficient condi- 
tion number hl/h, < l / ~ .  

or 
Then, 

Substituting Eqs. (905-907) into Eq. (887) gives 

(R;l), = v,(s-l),U: ( x  by (902) 

Equation (889) is evaluated with Ril replaced by 
from Eq. (902). 

b. "Mass below the diagonal" technique. The title refers 
to the method used to determine the pseudorank r of the 
matrix R,. The parameter estimation formula used with 
this method gives linear differential corrections for the r 
most significant solve-for parameters; the x - T least sig- 
nificant solve-for parameters are not corrected. 

Let the element which is in the ith row and fth column 
of the matrix R, be denoted as rii and let E be a small input 
positive number. Then the pseudorank of the x by x matrix 
R, is the smallest integer r for which 

Given the pseudorank r, partition the vectors x and 62: 
and the matrix R, as follows: 

(904) 

(905) 

The parameter vector x1 is estimated but x2 is not. Thus, 

Q"= 

The quantity Q% is minimized if 

(909) 

Hence, the parameter estimation formula is given by 

After several iterations of the orbit determination process, 
the quantity 0% should approach 

c. Partial-step algorithm. The partial-step algorithm 
is a modification of the singular-value decomposition 
method for obtaining the parameter estimate (Subsec- 
tion XVI-B-2-a). The singular-value decomposition of the 
matrix R, is given by Eq. (891). Substituting the inverse 
of this expression (Eq. 892) into the parameter estimation 
formula (Eq. 889) gives Eq. (896) for the differential 
correction to the solve-for parameter vector. The singular- 
value decomposition method deletes terms of Eq. (896) 
which correspond to small singular values since they mag- 
nify errors in the residual vector Szj.. owever, this magni- 
fication error affects only the magnitude of a term Sxg of 
Eq. (896); its direction is that of the vector vi, which is 
computed to sufficient accuracy. The partial-step algo- 
rithm computes each term 8x4 of Eq. (896). Then, a 
weighted length of each term is computed: 

b 7 



where FXt is an input realistic a priori covariance matrix 
for the solve-for parameter vector x. If JJSx;Ilw is greater 
than an input number QB, the correction vector Sxi is 
scaled to axi (adjusted) so that [ISxi (adjusted)llw is equal 
to a second input number QC, which is usually smaller 
than QB. The differential correction Sx is then given by 

X 

Sx= 2: Sx; (adjusted) (913) 
i=1 

The scaling process reduces the magnitude of any cor- 
rection vector Sxi which is unrealistically large in relation 
to the a priori uncertainty in the solve-for parameter vec- 
tor x. Since unrealistically large corrections result from 
magnification errors associated with small singular values, 
the scaling process places an upper limit on errors of this 
type. The partial-step algorithm produces a more accurate 
parameter estimate than the singular-value decomposi- 
tion method since some of the information contained in 
the terms of Eq. (896) associated with small singular 
values is retained. 

If the relation between the computed observables and 
the solve-for parameters is extremely nonlinear, many 
iterations of the orbit determination process will be re- 
quired in order to obtain convergence of the parameter 
estimate. For this nonlinear problem, small errors in the 
computed correction Sx can eliminate the small amount 
of convergence obtained on one iteration of the orbit 
determination process. Hence, the high accuracy of the 
partial-step algorithm is particularly suited to the non- 
linear estimation problem. 

This section gives the formulation for computation of 
the covariance matrix for the estimate of the parameter 
vector q. Let the error in the estimate of q be denoted bP3 

S q  = [;;-I (914) 

where Sy = SY, the a priori error. Then, the covariance 
matrix is given by 

43In Section XVI-B, the differential correction to the estimate of the 
solve-for parameter vector was denoted by ax. Here, the same 
notation will be used for the error in the differential correction. 

where a bar indicates the ensemble average or expected 
value of the function. The covariance matrix for the solve- 
for parameter vector is given by 

Similarly, for the consider parameter vector, 

The cross-covariance matrix for the solve-for and consider 
parameter vectors is given by 

Substituting Eqs. (916-918) into Eq. (915) gives 

(919) 

In order to compute the submatrices of Eq. (919), an 
expression is required for the error ax in the estimate of the 
solve-for parameter vector x. Equation (889) gives the 
linear differential correction to x obtained from each 
iteration of the orbit determination process. On the last 
iteration, the linear differential correction is very small and 
the neglected nonlinear terms are negligible. 

The matrix Rx of Eq. (889), computed from the weight- 
ing matrix WT and the AT matrix of partial derivatives, can 
be considered to be correct. The residual vector Szj of 
Eq. (889) is computed from WT and the residual vector 
given by Eq. (858). The error in the estimate x is due en- 
tirely to the error in 

The quantities 89, 8% and Sy are errors in $, %, and 7, 
respectively. The quantity (A, + A, S,) Sy is the error in a 
due to the error in y” used to compute it (see Eq. 880). 

rom Eq. (885), the error S 
Sz&, Sz:,, and Sz:, in the 

will produce errors 
vectors Sz‘, SzL, a&, 

and Sz:, respectively. Similarly, the error S 
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errors 6z',, SzL. SzL2, and 6zL Substituting 6 from Eq. (920) into Eq. (885) gives 

from Eq. (920) into Eq. (885) and using Eqs. (881) and (883) gives 

This result could have been obtained directly by inspec- 
tion of Eq. (886) (with the null correction vector replaced 
by 6y). The total error in the residual vector Szl, computed 
from Eq. (885) is 6zL from Eq. (921) plus 8zL2 from 
Eq. (922) or 

6ZL - &gsy 

Substituting this error into Eq. (889) gives the required 
expression for the error 8x in the estimate of x: 

Substituting Eq. (923) into Eq. (916) gives 

Postmultiplying 6z: from Eq. (921) by its transpose and 
averaging gives 

ut &SBT is the data covariance matrix r, which is pre- 
sumed to be the inverse of the diagonal data weighting 
mlxix w: 

i%%F = rz = W-1 (927) 

Hence, the partitioned matrix in Eq. (926) is Wil (see 
Eq. 860) and 

sz: 8Z:T = Pw$ w-,. ( w y  P T  (928) 

Using Eqs. (862) and (W), this reduces to 

Since Eq. (929) is an identity matrix, its submatrix 
Szl,, Sc (see Eq. 921) is also an identity matrix: 

The matrix 6F6&: is also required in Eq. (925). Using 
Eq. (921), it can be expressed as 

Postmultiplying Eq. (921) by SyT and averaging gives 



Substituting from Eqs. (867) 
Eqs. (862) and (864) gives 

and (868) and using 

> z  

> x  (933) 

Substituting e from Eqs. (867) and (868) and A, from 
Eq. (881) into Eq. (883) and retaining the first x columns 
only gives 

Substituting Eqs. (933) and (934) into Eq. (931) gives 

Substituting Eqs. (930) and (935) into Eq. (925) gives 

r, = Ril ( R;l)T + Rl1 R,, ?, R:, ( R;l)T (936) 

Postmultiplying Eq. (923) by SyT, averaging, and substi- 
tuting Eqs. (918) and (935) gives 

r,, = - R;’ R,, r, (937) 

f course, 

f;, = (938) 

If the parameter estimate is obtained by using the sin- 
gular value decomposition method (Section XVI-B-2-a) 
to invert the matrix R,, that is, if the parameter estimate 
is obtained from q. (889) with Ril replaced by its r-rank 
approximation (R:),. computed from Eq. (902), then this 
substitution is also made in Eqs. (936) and (937). 

If the “mass below the diagonal” technique (Section 
XVI-B-2-b) is used to determine the pseudorank r of the 
matrix R,, estimates for the r most significant solve-for 

parameters are obtained from Eq. (911). For this case, 
Ril in Eqs. (936) and (937) is replaced by 

r x - r  

This produces zeroes in the rows and columns of r, for 
the x - r least si@cant solve-for parameters whose 
values are not estimated. It also produces zeroes in the 
rows of rxy for these parameters. 

If the parameter estimate is obtained by using the 
partial-step algorithm (Subsection XVI-B-2-c), r, and r,, 
are not currently computed by the DPQDP. 

Given r,, r,,, and r, from Eqs. (936-938) and the 
matrices S, and S, defined by Eq. (773) or (877-878), the 
covariance matrix for the exactly constrained parameter 
vector s is computed from Eq. (817). The square roots of 
the diagonal elements are the standard deviations for the 
exactly constrained parameters (0, 1, or 2 parameters). 
The matrices r,, and rys given by Eqs. (818) and (819) are 
not computed. 

The covariance matrix rq given by Eqs. (919), (935), 
(937), and (938) can be expressed as 

rq = STS (939) 

From the definition of Eq. (862), the square root of rq is 
the matrix S. It is given by 

The matrix (R;l)T is lower triangular while 2 is upper 
triangular. The inverse of Eq. (939) is 

ril = (Si) (S-l). (941) 

The square root of ril is given by 

(942) 

1 



The following will show that Eqs. (936) and (937) for computing r, and r,,, respectively, from the square-root formu- 
lation are identical to the corresponding equations (Eqs. 813 and 814) of the normal-equations formulation (if the inexact 
constraints of the latter formulation are not applied). Substituting from Eqs. (867) and (868) and AT from Eq. (881) 
into Eq. (883) gives 

W (A, + A, S,)lW (A, + A, S,) R, I R,, 
_ - _ _ _ _ - _ _ _ _ _ I - _ _ _ _ _ _ _ _ _ _ _  

_ _ _ _ _ _ _ - _ _ _ _ I _ _ _ _ _ _ _ - - - - -  - - _ I _ _ -  
I 0 I 

(943) 

Premultiplying each side of this equation by its transpose gives 

I- (A, + A, S,)' W (A, + A, S,) + W, I (A, + A, S,)'W (A, + A, S,) - WxFw F;' 
- 

(Ay + As Sy)F W (A, + A, S,) - F;' F,', W, I (Ay + A, S,)' W (A, + A, S,) + Fil F$ W, Fw F;' + F;' 

Equating the upper left-hand submatrices gives 

RE R, = (A, + A, S,)F W (A, + A, S,) + W, 

and equating the upper right-hand submatrices gives 

R% Rw = (Ax + A, S,)'W (A, + A, S,) - W, Fx, F;' 

Substituting Eq. (796) into Eq. (945) gives 

R: R, = I + W, 

Inverting this equation gives 

R;'(R;')* = (1 + W,)-' (948) 

If inexact constraints are not applied to the estimation of the parameter vector with the normal-equations formulation, 
the matrix L given by Eq. (807) reduces to 

L = (A, + A,S,)'W (A, + ASS,) (949) 

Substituting this expression for L into Eq. (946) gives 

RE R, = L - WxFxy F;' (950) 

In order to facilitate the substitution of qs. (948) and (950) into Eqs. (936) and (937), the latter are written as 

r, = R;' ( ai1). + R;l (Ril)* 8,' R,, H, a& pi, Ril ( (951) 

and 

r,, = - R;' R; R,, F, (9555) 
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Substituting Eqs. (948), (950), and the transpose of Eq. (950) into Eqs. (951) and (952) gives 

r, = ( J  + W J - ~  + (J  + w,)-i ( w , ? ~  QFk W, + L Fv LT - w,?, LT - L F$, w,) ( J  + W,)-l (953) 

rZsr = (J  + (w, FZv - L Fv) (954) 

and 

In the normal-equations formulation, r, and r,, are com- 
puted from Eqs. (813) and (814), respectively. If there are 
no inexact constraints, the matrix K is removed from 
Eqs. (813) and (814), the matrix L given by Eq. (807) re- 
duces to Eq. (949), and Eqs. (813) and (814) reduce to 
Eqs. (953) and (954), respectively. Thus, in the absence of 
inexact constraints, Eqs. (813) and (814) for computing r, 
and r,, with the normal-equations formulation are equal 
to the corresponding equations (Eqs. 936 and 937) of the 
square-root formulation. Furthermore, the equality of 
Eqs. (936) and (813) applies to each of the two terms. 

From the equality of Eqs. (813) and (936) and the dis- 
cussion of Section XV-E, which relates the various terms 
of Eq. (813) to the various error sources which affect the 
estimate of the solve-for parameter vector, the following 
conclusions can be drawn. The first term of Eq. (936) is 
the nonconsider covariance matrix: 

It accounts for errors in all of the processed tracking data 
(the current batch of data and all previously reduced 
batches of data) and the error in the a priori parameter 
estimate for the first batch of data. The second term of 
Eq. (936) accounts for errors in the consider parameters. 
Because of its presence, r, computed from Eq. (936) is 
referred to as the consider covariance matrix. Substituting 
Eqs. (937) and (955) into Eq. (936) gives 

The sensitivity matrix S ,  is defined by Eq. (828) and 
related to r,, by Eq. (831). Substituting 
Eq. (831) gives 

Substituting Eqs. (955) and (954) into Eq. (936) gives 

This section gives the fo 
variance matrix for the p 
square root of its inverse, p, from the injection epoch44 
to any other epoch. The parameter vector corresponding 
to the mapped covariance matrix is q with the spacecraft 
injection position and velocity components replaced by 
the position and velocity components of the spacecraft 
relative to a specified body R at the map epoch. 

The mapping formulation is used to map r, to a new 
epoch for statistical purposes or to map r, or to the 
injection epoch for a zew batch of data, where it is used as 
a priori information (r, or FP). The processing of a batch 
of data requires the square root of the weighting matrix, 
q, which can be computed directly from Eq. (867) if 
Fp is available. However, if only 7, (containing sub- 
matrices ?,, :,,, and Fv) is available, Fp can be computed 
from Eqs. (861) and (868). 

1. General mapping formulas. The solve-for parameter 
vector q, given by Eq. (857), will be denoted as go in this 
section. It can be re-ordered and partitioned as 

(959) 

The spacecraft state vector 
a, and observational param 

parameter vector 
re defined before 

q. (836).45 The mapped parameter vector is given by 

44The epoch of the solve-for spacecraft state vector. 
45The parameter vector go given by Eq. (836) contains the exactly 

constrained parameter vector s, whereas qo given by Eq. (959) 
does not. 



where 

= spacecraft state vector relative to body R at map 

The injection covariance matrix is the covariance matrix 
and will be denoted as rqo. The mapped covariance 

matrix is the covariance matrix for qR and will be de- 
noted by r. 

time 

The injection covariance matrix (Eq. 919) with rows 
and columns ordered according to Eq. (857) is given by 
Eq. (939). This same matrix with rows and columns 
ordered according to Eq. (959) is given by 

rqo = TSTSTT (961) 

where T is an (orthogonal) permutation matrix. Premulti- 
plication of STS by T re-orders the rows, while postmul- 
tiplication by TT re-orders the columns. Eq. (961) can be 
rewritten as 

rqo = (STT)T (STT) (962) 

The matrix STT is the matrix S given by Eq. (940) with 
the columns re-ordered according to Eq. (959). Let it be 
denoted by 

Sc STT (963) 

Then, 

rqo = S$S, (964) 

Let the mapping matrix M be defined by 

The formulation for computing M is given in Subsec- 
tion XVI-D-2. From Eq. (965), the mapped covariance 
matrix is given by 

r = S q R  SqRT 

= M 6qo6q: MT 

= M rqo M' (966) 

= (SC MT)' ( S C  M T )  

= M S Z S c M T  

Hence, the square root of r is 

This equation maps the square root of rqo, namely Sa, to 
the square root of r. Given @ from Eq. (967), the mapped 
covariance matrix is given by 

Inverfmg Eq. (967) gives 

But, from Eqs. (864) and (863), 

Hence, the square root of the inverse of r is given by 

From Eq. (963), 

( S G ~ ) ~  = (S-l). TT (972) 

which is the square root of the inverse of Fq0 given by 
Eq. (942), with the columns re-ordered according to 
Eq. (959). Thus, Eq. (971) maps the square root of the 
inverse of r, to the square root of the inverse of r. 

ing pnatrix. This section gives the formulation 
for the mapping matrix M and its inverse M-l.  The former 
is used in Eq. (967) to map the square root of the covari- 
ance matrix, while the latter is used in Eq. (971) to map 
the square root of the inverse of the covariance matrix. 

The dynamic parameter vector a of Section XV will be 
denoted here as a'; it includes all of the dynamic param- 
eters which affect the spacecraft trajectory. Among them 
are pE, pM, and RE, which are related by the lunar con- 
straint, and ps and A N ,  which are related by the solar 
constraint. One parameter from each of these constraints 
is placed in the exactly constrained parameter vector s. 
The remaining parameters of a' are members of 
by Eq. (857) or Eq. (959). Hence, a' can be partitioned as 

(973) 

where a is the dynamic parameter vector of 
It includes all of the dynamic sol 
parameters except the components 

e 



From the formulation of Subsections XV-I?-1 and -2 
of Eq. (960) at an ET and Eq. (973), the variation in 

map epoch is given by 

The U and V matrices are obtained from the solution of 
the variational equations (Section XIII). For a non-ET 
map epoch (Al,  UTG, UT1, or ST), the matrix V is re- 
placed by v*, which is the V matrix with the ATl958 col- 
umn incremented by 

&/IJ 

and the Afeesium column incremented by 

t - 252,460,800 0 - 
9,192,631,770 %' 

where X& is evaluated at the map epoch t. Let 

(975) 
ax$ V'=V - - 
aa' 

where V is replaced by V* for a non-ET map epoch. Par- 
titioning the columns of V' according to Eq. (973) gives 

V' = [VL i Vt]  

The matrix VL gives partial derivatives of X R  with respect 
to solve-for and consider parameters and V', gives partial 
derivatives of X R  with respect to the exactly constrained 
parameters. Substituting Eqs. (973), (975), and (976) into 
Eq. (974) gives 

(976) 

(977) 

From Eqs. (772) and (773), the variation in the exactly 
constrained parameter vectors is 

ss = [ S ,  i S,] [;;-I 
Repartitioning according to Eq. (959) gives 

(978) 

where Sx, Sa, and S b  are the partial derivatives of s with 
owever, all of the 

parameters of the solar and lunar constraints are dynamic 
parameters. Thus, Sx and Sa are null matrices and 

SS = SaSa (980) 

Substituting Eq. (980) into Eq. (974) gives 

+ (VL + V: Sa)  Sa (981) 

From Eqs. (959), (960), (965), and (981), 

Thus, 

I- - - - - - - - - - - - -  
0 1  I 
- - 1- - - - - - - - - - 
0 1  0 

-1- ; - :] - 

.I.-- I I  

Inverting this equation gives 

The formulation of Section XV maps the covariance 
matrix for the parameter vector g,  which contains the 
solve-for, consider, and exactly constrained parameters. 
The submatrix of the mapped covariance matrix which 
corresponds to the solve-for and consider parameters is 
identical to the covariance matrix for solve-for and con- 
sider parameters mapped with the formulation of this sec- 
tion. The constraints are used in Section XV to compute 
the rows and columns of the injection covariance matrix 
which correspond to the exactly constrained parameters; 
in this section, they are used to combine partial derivatives 
in the mapping matrix. 

l t ~ ~ ~ ~ ~ a t ~ o ~  of matvices. This section shows how 
to form W from Eq. (967), r from Eq. (968), and r+j from 
Eq. (971) as products of partitioned matrices. The purpose 
of partitioning is to take advantage of the large number of 
null and identity matrices in M and M-l.  



In order to compute rU from Eq. (967), partition the where a is the number of dynamic parameters in a and b 
is the number of observational parameters in 83. Also, in 
Eq. (983), define 

columns of the matrix S, according to Eq. (959): 

SC E [% I n@ nbl (985) 
(986) 

CCIUIUI- 6 a b  VAEVk -k v',s, 

Then, substituting Eqs. (983), (985), and (986) into Eq. (967) gives 

L J 

After computing 13 from the last form of Eq. (987), 
partition as 

I.ta= [AIB] (988) 
-ly, 

6 4' 

where q' = a + b. Substituting Eq. (988) into Eq. (968) 
gives 

This is the covariance matrix for 

where 

(989) 

The rows and columns of Eq. (989) are partitioned 
q. (990). The covariance matrix for 
-covariance matrix for 

and the covariance matrix for 
latter submatrix of Eq. (989) need not be computed, since 
it is identical to the corresponding submatrix of the injec- 
tion covariance matrix. 

In order to compute r 4  from q. (971), partition the 
columns of (S;l)T according to Eq. (959): 

6 a b  

Substituting Eqs. (984), (986), and (992) into Eq. (971) 
gives 

[0{110] + [db] [ O f 0 ! 1 ]  

= [de u-' I -d, U-l VA + du f db] 

(993) 
The mapped covariance matrix r computed from 

Eq. (989) has its rows and columns ordered according to 
the ordering of parameters in Eq. (960). If r is used as 
a priori information for processing a new batch of data, 
ie., if it is used as Fq, the rows and columns must be 
re-ordered according to the ordering of parameters in 
Eq. (857) for the new batch of data. Formally, this re- 
ordering is obtained by premultiplying r by TT and post- 
multiplying it by T. After re-ordering, the submatrices Fo, 
rzg, and can be extracted. 

Similarly, r-% computed from Eq. (993) is the square 
root of the inverse of the mapped covariance matrix whose 
rows and columns are ordered according to the ordering 

. (960). If r* is used as a priori infor- 
g a new batch of data, i.e., if it is used 

as Fp in Eq. (867), it must be postmultiplied by T. a h i s  
changes the ordering of the mns of r* from the order- 
ing of the parameters in (960) to the ordering of 
parameters in Eq. (857) for the new batch of data. 



The meaning of the symbols used frequently through- 
out the text are given below. In order to prevent the 
notation from becoming excessively complex, some of the 
symbols have more than one meaning; the correct mean- 
ing can easily be determined from the context. The sym- 
bols are also defined in the text. There are many localized 
departures from the meaning of the symbols given here. 

earth 

moon 

earth-moon barycenter 

planet 

sun 

center of integration for spacecraft trajectory 
(C =E,M,S,orP) 

spacecraft 

transmitter (transmitting station on earth) 

spacecraft (a free spacecraft or a landed space- 
craft on a planet or the moon) 

receiver (receiving station on earth) 

transmission time at point 1 

reflection time or transmission time at point 2 

reception time at point 3 

ion elseity rs 

In the following, a “1950.0” position vector has rectangu- 
lar components referred to the mean earth equator and 
equinox of 1950.0. 

1950.0 position vector of point i relative to point i 

1950.0 position vector of point i relative to the 
sun S. That is, r; = e. 
1950.0 position vector of spacecraft relative to the 
center of integration C 

body-fixed position vector of tracking station, 
landed spacecraft, or free spacecraft, with rectan- 
gular components referred to the equator and 
prime meridian 

r‘ 

3.50 

body-fixed position vector of spacecraft with rec- 
tangular components referred to the up-east-north 
coordinate system 

1950.0 position vector of tracking station or landed 
spacecraft relative to body on which located 

For any of the position vectors above, F + $, Y, Y, where 
the dots denote differentiation with respect to ephemeris 
time. 

r, Ti, rii 

&, Bii 

x, Y, x, 
1;, zj, 2, 

magnitudes of r or rb, T;, and r{ = rii, 
respectively 

magnitudes of i; and i;j, respectively 

rectangular components of position vector 
and velocity vector (may have same indices 
as vectors) 

X 

Y 

= state vector (all may have 
indices) 

In the relativistic 1-body problem (Section II), 

r, 8, + 

f, i 

spherical coordinates (see Fig. 1) relative to the 
body (the sun in all DPODP applications) 

position and velocity vectors relative to the body 
with rectangular components referred to a non- 
rotating coordinate system (1950.0 components 
in DPODP applications) 

i magnitude of 

In the relativistic n-body problem (Section I 

ri,ii position and velocity vectors of point i relative 
to the barycenter of the solar system, with rec- 
tangular components referred to a nonrotating 
coordinate system 

eters 

r, +, h body-centered radius, latitude, and longitude 
(measured east from prime meridian) of track- 
ing station, landed spacecraft, or free space- 
craft 
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U,Q distance from spin axis and height above 
equator of a tracking station or landed space- 
craft 

For a tracking station, a subscript 0 refers the values 
above to the mean pole, equator, and prime meridian of 
1903.0. Otherwise, the quantities are referred to the true 
pole, equator, and prime meridian of date. 

+g geodetic latitude of tracking station 

gravitational constant of body i, kms/s2 = Gmi, 
where G = universal constant of gravitation and 
mi is the mass of body i 

PE - - - ratio of mass of earth to mass of moon 
PM 

gravitational constant in the relativistic 1-body 
problem, km3/s2 (Section I1 and Appendix e) 
the number of kilometers per astronomical unit 
AU = scaling factor for heliocentric ephemerides 
of the planets and earth-moon barycenter 

the number of kilometers per fictitious earth 
radius = scaling factor for geocentric lunar 
ephemeris 

osculating orbital elements for the heliocentric 
ephemeris of a planet or the earth-moon 
barycenter or for the geocentric lunar ephemeris 

estimated correction to 

speed of light, km/s 

ephemeris time = coordinate time t of general 
relativity, the independent variable for the 
ephemerides 

atomic time derived from oscillations of a 
cesium atomic clock. One A1 second is 
9,192,631,770 cycles of cesium. 

broadcast universal time 

observed universal time, corrected for polar 
motion 

station time = time derived from an atomic 
clock at each tracking station 

An epoch is expressed as double-precision seconds past 
January 1, 1950, Oh and is denoted as t (i) or i, where i is 
the symbol for the time scale (ET, Al ,  UT@, UTI, or ST). 
The symbol t indicates (1) ephemeris time or (2) time in 
any time scale. The epoch t (i) or t may be subscripted as 
indicated under “Subscripts and Superscripts”. 

T, T* proper time recorded on the observer’s 
atomic clock. The length of the T second is 
chosen so that at zero Newtonian potential 
and zero barycentric velocity, dT = dt 
(ephemeris time). The length of the T* 
second is chosen so that T* on earth agrees 
on the average with ephemeris time. 

Tu number of Julian centuries of 36,525 days of 
UT1 elapsed since January 0,1900, 12h UT1 

T number of Julian centuries of 36,525 
ephemeris days elapsed since January 0, 
1900, Zh ET 

JD Julian date 

a, b, c, d, 
e, f ,  g, h polynomial coefficients for time 

transformations 

UTC - ST= a + bt + ct2 

A1 - UTC = d + et 

A1 - UT1 f -t- gt + htz 

The polynomial coefficients are specified by time block 
and t is seconds past the start of the time block. It is 
evaluated with one of the two times related by the trans- 
formation. 

ATl958 the constant part of the (E 
time transformation = 32. 
(adopted) 

fcesium conversion factor from cycles 
obtained from a cesium atomic clock 
to seconds of A1 time = 9,192,631, 
cycles per second 

cycles of cesium atomic clock per 
ephemeris second (average). The 
parameter Afcesium may be e sha ted  
by the DPODP; its current nominal 
value is zero. 

fcesium +Afcesium 

1 



isce s 

8 true sidereal time = Greenwich hour 
of h e  equinox of date 

derivative of 8 with respect to ephemeris 
time 

A precession matrix, transforming from 
coordinates referred to the mean earth 
equator and equinox of 1950.0 to 
coordinates referred to the mean earth 
equator and equinox of date 

N nutation matrix, transforming from coordi- 
nates referred to the mean earth equator 

and equinox of date to coordinates referr 
to the true earth equator and equinox 
of date 

9 Newtonian potential (positive) 

1 + 0  
y = 2 + 0  

where@ = the coupling constant of the scalar 
free parameter of the Bran 
of gravitation 

E defined equal to 

7 



This appendix gives two derivations of Eq. (54), the 
n-body equations of motion in the Brans-Dicke theory. 
The derivations also apply for the corresponding equa- 
tions of general relativity (Eq. 35) if the parameter y of 
the Brans-Dicke theory is set equal to unity. In Section I, 
the equations are derived from the n-body Lagrangian 
(Eq. 53), while in Section I1 they are derived from the 
n-body metric tensor (Eqs. 43-48 and 30-31). 

j#i 
(A-4) 

In order to differentiate Eq. (A-4) with respect to CO- 

ordinate time t for use in Eq. (A-1), the derivatives of 33 
and rij  with respect to t are required: 

The n-body Lagrangian L of the Brans-Dicke theory 

refers to the particular body i whose motion is desired and 

i? 1. = i.. z z  e;. 

&I - = 2ii 'yi at 

(A-5) 

(A-6) 
(Eq. 52) may be expressed as Eq. (53), where the index i 

the indices i and k refer to the n other bodies. The n-body 
equations of motion are the Euler-Lagrange equations: Since it appears in a term of order 1/c2 in Eq. (A-4), the 

Newtonian expression for Yi may be used: 

ri = (A-7) 
( A 4  .O (Ti - ri) 

aL 
axi dt ati --"(E)=() X---)Y,Z 

Gj 
j#i In Eq. (53), 

Substituting Eq. (A-7) into Eq. (A-6) gives i2 = ;: + 63 + i t  (A-2) 

and (A-8) 
j#i 

The coordinate distance Tij is given by 
(A-3) 

Differentiating L (Eq. 53) with respect to % gives r f j  = (rj - Q) (rj - ri) (A-9) 
1 1 + 2y 

1 + -83 + ~ 

aL 
a i i  2c2 C2 
-= 

j#i 

Hence, 

(A-10) 1 a *  

Ti j 
ijj = - (ri - ri) (rj - ri) 

Using Eqs. (A-8) and (A-lo), a straightforward differentiation of Eq. (A-4) with respect to t is  given by 

E 



Evaluating Si in the l/c2 terms from Eq. (A-7), combining like terms, and changing the sign of the equation gives 

[ri - Si] [ (2 + 2,) i; 

j#i  

In order to differentiate L with respect to xi, the following subpartial derivatives are required: 

(A-12) 

(A-13) 

(A-14) 

(A-15) 

(A-16) 

(A-17) 

Using these equations, a straightforward differentiation of L (Eq. 53) with respect to xi gives 



Note that interchanging the j and k indices in the Past term of Eq. (A-18) gives the next-to-last term. 
term may be deleted and the next-to-last term doubled. With this change, a combination of like terms in Eq. (A-1s) 
gives 

(A-19) 

Adding Eqs. (A-19) and (A-12) and setting the result equal to zero as indicated in Eq. (A-1) gives Eq. (54) for the 
acceleration of one of the bodies relative to the barycenter of the system of n bodies, with rectangular components 
referred to a nonrotating coordinate system. The acceleration of body j appearing in the 1/c2 terms is evaluated with 
the Newtonian expression (Eq. 31), and the summations over kf j in Eqs. (31) and (54) include body i. 

The components of the n-body metric tensor in the Brans-Dicke theory are given by Eqs. (43-48) and (30-31). 
Substituting these components into Eq. (34) gives the following expression for L2 (where L = ds/dt): 

i#i j#i k # j  

(A-20) 

The equations of motion are given by Eqs. (18) and (19), a form of the Euler-Lagrange equations, which are repeated 
here with x and 3i. replaced by xi and &, respectively: 

where 

-- i ---.e- LL LL 
L L2 - c2 

(A-21) 

The quantity Lf, is obtained by differentiating a simplified expression for L2 containing terms to order l/co only. The 
derivative L al;/axi is obtained from Eq. (A-20) by considering the Newtonian potential at each perturbing body i (in 
term 4 of Eq. A-20) and the acceleration of body i, computed from Eq. (31), to be functions of coordinate time t only, as 
indicated after Eq. (34). 



erentiating Eq. (A-20) with respect to & gives 

3#i j # i  

Differentiating with respect to coordinate time t using Eq. (A-10) and evaluating jei in a 1/c2 term with Eq. (A-7) gives 

j # i  j#i 

where Zj is given by Eq. (31) with the summation over k # j including body i. 

To terms of order l/cO, L2 is given by 

Differentiation with respect to t using Eqs. (A-8) and (A-10) and substitution into Eq. (A-22) gives E/L to order 1/c2. 
Substitution of this expression and Eq. (A-23) to order l/co into the second term of Eq. (A-21) gives the following 
expression, containing all terms to order 1/c2: 

(A-26) 

Differentiating Eq. (A-20) with respect to xi using Eqs. (A-15) and (A-17) and considering the Newtonian potential at 
each perturbing body i and the Newtonian acceleration of each perturbing body j to be functions of coordinate time t 
only gives 

where ".;. and ?j are obtained from Eq. (31) and the summation over k # j in Eq. (31) and in Eq. (A-2'9) includes body i. 
Adding Eqs. (A-24), (A-26), and (A-27) and setting equal to zero according to Eq. (A-21) gives Eq. (54) for the accelera- 
tion of one of the bodies relative to the barycenter of the system of n bodies. 



This appendix gives the derivation of the periodic rela- 
tivity terms in the ET - A1 time transformation (Eq. 65). 
The nomenclature used in t h i s  appendix and the numeri- 
cal values of the constants used are given in Section 11. 
The expression for ET - A1 includes all terms which 
affect “differenced-range” doppler (see Section XI) by 
more than 2 X m/s per AU of range to the space- 
craft. Using this criterion, minimum values for the coeffi- 
cients of the retained daily, monthly, and annual terms 
of dAl/dET are generated in Section 111. The terms of 
dAl/dET which must be retained are identified in Sec- 
tion IV. Expressions for the magnitude and orientation of 
the velocity vector obtained from the elliptical orbit of 
the earth-moon barycenter relative to the sun, which are 
required in the derivation of Eq. (65), are derived in Sec- 
tion V. The derivations of the retained terms of dAl/dET 
are given in Section VI. In Section VII, these terms are 
summed and integrated to give the final expression for 
ET-AI. 

eric 

In the following, a dot indicates the derivative of the 
quantity with respect to coordinate time t (synonymous 
with ephemeris time ET). 

p ~ ,  p E ,  px = gravitational constants for sun, earth, and 
moon, respectively: 

pB = 1.32712499 X 1011km3/~2 

pE = 398,601.2 km3/s2 

p x  = 4,902.78 km3/s2 

p = pfi/pM = 81.3Ql 

c = speed of light = 299,792.5km/s 

AE = the number of kilometers per AU 

= 149,597,893.0 km/AU 

moon barycenter 

149, 

moon barycenter 

a = semimajor axis of heliocentric orbit of earth- 

= 1.00 = 149,597,924 km 

e = eccentricity of heliocentric orbit of earth- 

= 0.01672. From 1950 to 2000, the last figure 

M = mean anomaly of heliocentric orbit of earth- 

E = eccentric anomaly of heliocentric orbit of 

o = true anomaly of heliocentric orbit of earth- 

L = geometric mean longitude of the sun, 

changes from 3 to 1. 

moon barycenter (Eq. 67) 

earth-moon barycenter 

moon barycenter 

referred to the mean equinox and ecliptic 
of date (Eq. 68). 

I = true longitude of the sun, referred to the 
mean equinox and ecliptic of date 

T = radial coordinate of earth-moon barycenter 
from sun 

& = velocity of earth-moon barycenter relative 

& = circular orbit velocity of earth-moon bary- 

to sun 

center relative to sun 

= (“ + + a M )  = 29.784741 k m / ~  

y = elevation angle of heliocentric velocity 
vector of earth-moon barycenter from the 
transverse direction 

= tan-1 [q(r;)] 
E = mean obliquity of the ecliptic 

cos .E = 0.91746. From 1950 to 2000, the 
Iast figure changes from 4 to 8. 

ax = semimajor axis of geocentric orbit of the 
moon 

from the lunar constraint, Eqs. (1 
(108), using the values of pE and px 
given above 

= 384,399.285 km. The term ax is computed 

eM = eccentricity of geocentric orbit of moon 
= 0.0549 (not used in expression for E 
= mean longitude of the moon, measured in 

the ecliptic from the mean equinox of date 
to the mean ascending node of the lunar 
orbit, and then along the orbit 

J T 



E) = - L  = mean elongation of the moon from 
the sun (Eq. 69) 

iM = circular orbit velocity of moon 

+ par )" = 1.024549 km/s 
ad( 

6a = longitude of the mean ascending node of 
the lunar orbit on the ecliptic, measured 
from the mean equinox of date 

i = inclination of the lunar orbit to the ecliptic 
plane 

cos i = 0.99597 

OM = mean sidereal time = Greenwich hour angle 

8, = mean sidereal rate (Eq. 243) 

of mean equinox of date 

= 0.729212 X rad/s 

UT = universal time UT1, hours past midnight, 
converted to radians (computed from 
Eq. 66) 

0 (EUT 2 ~ r a d  UT=-- - - 0.7272205 X rad/s dt 86,400 s 
-- 

(To this accuracy, this UT derivative equals 
the desired ET derivative.) 

X = east longitude of tracking station at which 
A1 atomic clock is located 

u = distance of tracking station at which A1 
- atomic clock is located from earth's spin 
axis, km 

equator, km 
2) = height of tracking station above earth's 

LN = geocentric velocity of tracking station 

& g: = position and velocity vectors of point a 
relative to point b 

where the indices a and b may be 

= earth-moon barycenter 

E = earth 

M = moon 

STN = tracking station on earth (location of A4 
atomic clock) 

S = sun 

= magnitude of i-: 

3 

+a = Newtonian potential at point a due to 
the sun 

+ = Newtonian potential at tracking station due 

B = heliocentric velocity of tracking station 

to the sun 

The angles M, L, and D are computed from Eqs. (67), 
(68), and (69). These linear representations are tangent to 
the quadratic or cubic expressions of Ref. 25, pp. 98 and 
107, for T = 0.7 Julian centuries past January 0, 1900, 
12h ET. 

The values of the gravitational constants, c, and AE 
were obtained from Ref. 29; the remaining constants were 
obtained from Ref. 25. 

s i  

An accurate expression for the ET - A1 time transfor- 
mation is required to implement the forthcoming program 
change specified in Section XI, namely the computation of 
doppler observables from differenced range observables. 

In the derivation of the expression for ET - Al,  all 
terms affecting 'differenced-range" doppler by more than 
2 X 10-7m/s per AU of distance to the spacecraft were 
retained. Several terms of this magnitude were neglected 
and the resulting error in differenced-range doppler is 
about lO-'jm/s/AU or 10-5m/s for a spacecraft range 
of 10AU. The figure of 10-5m/s is the accuracy of the 
current doppler observable. 

The contribution to differenced-range doppler ( 
from each term of ET - A1 satisfies the inequality46 

The absolute value of the contribution, I SDRD 1, is ex- 
pressed in 1-way m/s, and (ET - Al) represents a peri- 
odic relativity term of ET - Al .  Since the range p to the 
spacecraft is the range in AU times 1.5 X loT1 m/AU, 

46See Subsection XI-C-2-a. 
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Since all retained terms of ET - A1 contribute more 
than 2 X lo-? m/s/AU, they satisfy the inequality 

T -1. es 

- (ET - A l )  > 1.33 X 1O-I8/s (B-3) 

or 

where dAl/dET represents a periodic relativity term of 
dAl/dET. 

The expression for dAl/dET is Eq. (64), repeated here: 

+ - J  1;2-$!  Afcrsium +- dAl  - = I  ----- 
dET c2 2 c2 fcesium 

03-5) 

Thus, the periodic variations in + and F retained in 
Eq. (B-5) must satisfy 

If the periodic variations in 4 and (1/2) i2 have a mag- 
nitude of M(km2/s2) and a period P, the inequalities of 
Eqs. (B-6) and (B-7) become 

2T 
P - I M I > 1.20 x 10-7 km2/~3 

The variations in b, and i2 have periods of about 1 day, 
1 synodic month, and 1 year. Let the retained terms 
satisfy 

IMI > a  (B-9) 

(3-10) 

The values of a and b for each of the above-mentioned 
periods are shown in Table 3-1. 

It will be seen that the daily variations in dAl/dET are 
proportional to u, the distance of the A1 atomic clock 
from the earth's spin axis in kilometers. Since the maxi- 
mum value of u is 6,378 km, all daily terms of dAl/dET 
whose coefficient M/(c2  u) is greater than 2.8 X l0-ls/km 
should be retained. 

The terms of + - 6 which must be retained in Eq. (B-5) 
may easily be identified by consideration of Eq. (B-6). 
The potential at the A1 clock on earth due to a specific 
body i is 

+j = E  (B-11) 
Ti 

where pi is the gravitational constant of body i and Tj  is 
the coordinate distance from the A1 clock to body i. The 
periodic variation in b , j  must be retained if 

The maximum value of & from a planet 
10-8km2/s3. This value is obtained from either 

(B-12) 

is about 
Venus or 

Jupiter and is less than the criterion of 1.2 X lo-' km2/s3. 
Hence, the variation in the potential + due to the planets 
may be ignored in Eq. (B-5). The peak value of from 
the moon is about 2 X le8 km2/s3. Hence the lunar poten- 
tial may also be ignored in Eq. (B-5). 

The solar potential at the A1 clock has an annual, 
monthly, and daily variation. The coefficient of the 
monthly term of +8 in Eq. (B-12) is about O.O12km/s, and 
the monthly component of @ has a maximum value of 
about 7 X km2/s3. Thus, the monthly variation in the 
solar potential may be ignored. The coefficients of the 
annual and daily terms of +8 are both about 0.5 km/s, and 
the corresponding values of i" are about 3 X kmz/s2, 
which is significant. ence, in Eq. (B-5), the only si&- 
cant Variations in the Newtonian potential + at the loca- 
tion of the A1 clock on earth are the annual and diurnal 
variations in the solar potential. 

The expression for the square of the heliocentric veloc- 
ity s' of the tracking station at which the A1 atomic clock 
is located, used in q. (B-5), is given by 

7 1 



or 

The terms of P - 2 which must be retained in Eq. ( 
consist of the periodic variation in the first term of 
Eq. (B-14) and the last three terms. Referring to Sec- 
tion 111, the value of M for the second term of Eq. (B-14) 
is one-half of the magnitude of the periodic variation of 
the term or about km2/s2, which is less than the mini- 
mum value of 4.8 X 10-2km2/s2 for a retained monthly 
term. The geocentric velocity of a tracking station is an 
extremely constant quantity, and hence the variation in 
the third term of Eq. (B-14) is also insignificant. 

Section VI will give the derivations of the periodic 
terms of dAl/dET arising from the following: 

The annual variation in + and 9 of the tracking 
station (term AT) 

The daily variation in potential at the tracking sta- 
tion (term DP) 

The product of the daily and annual velocity com- 
ponents in 8z (Eq. B-14, term 4) (term DA) 

The product of the monthly and annual velocity 
components in ,? (Eq. B-14, term 5) (term MA) 

The product of the daily and monthly velocity com- 
ponents in i2 (Eq. B-14, term 6) (term DM) 

The expression for dAl/dET which contains these terms is 

dAl -- 
d E T - l +  

+ 

where 

%) 
AT 

+ 

+ 
DM 

+ 

+ Afeasium 

feesiurn 

(B-15) 

1 
= - 2 

(B-16) 

(B-14) 

1 - -  - - ,(;",a%) 

1 
= - ,(;;TN ;") 

(B-19) 

(B-20) 

In the derivation of an integrable expression for 
dAl/dET in Section VI, expressions are required for the 
magnitude and orientation of the velocity vector from 
the elliptical orbit of the earth-moon barycenter relative 
to the sun. These expressions are derived in this section. 

The square of the velocity Q is given by 

where 

r = a ( 1 -  ecosE) (B-22) 

Dividing by ra gives 

l l e  
r a  
-= -+ TCOSE 

Substituting Eq. (B-23) into Eq. (B-21) gives 

The expression for .& is obtained by expanding the 
square root in powers of e, retaining all terms to order e2. 
Then, using Eq. (B-23) to eliminate u/r and using trigo- 
nometric identities gives 

1 
ss = 1 + z e 2  + ecosE a 

Since terms of order greater than e2 are ignored, E is 
given by 

7 



Substituting Eq. (B-26) into Eq. (B-25) and retaining 
terms to order e2 gives the required expression for is: 

3 
4 + e cos M +-e2 cos 2~ 

where 

(B-28) 

In Section VI, the orientation of the velocity vector of 
the sun relative to the earth-moon barycenter is specified 
by the angle 

1 + 9Odeg - y 

An expression will be developed for 

1 -  y = L + (v - M) - y 

From Ref. 58, p. 120, 

5 
4 v -  M=2esinM+-e2sin2M+ 

The elevation angle y is given by 

y = t a r 1  (i) 
The expressions for i and ri, are 

gnoring terms of order greater than e2, 

T 
y z -e sinv 

a 

(B-29) 

(B-30) 

(B-31) 

(18-32) 

(B-W 

Using Eqs. (B-22), (B-26), and (B-30), and retaining terms 
to e2 gives the desired expression for y :  

Substituting Eqs. (B-30) and (B-37) into Eq. ( 

3 
4 1 - y = L + esin +-e2sin2M ( 

Integrable forms for the five terms of dAl/dET speci- 
fied by Eqs. (B-16) to (€3-20) are obtained in the five 
subsections below. A number of terms are obtained as 
expansions in powers of the eccentricity of the heliocentric 
orbit of the earth-moon barycenter or the geocentric orbit 
of the moon. The required order of e for each term is 
stated before the term is derived. It will be seen that all 
of the derived terms of dAl/dET are larger than the mini- 
mum values for retained terms specified in Section 111, 
and that using the next order of e in each expansion would 
yield terms which are smaller than these criteria. 

. Term AT:  ann^^^ ~ ~ ~ i a t i o n  in C$ an 

Repeating Eq. (B-le), 

Since +B = p&, Eq. (B-23) gives 

- 1 
[(&Y)~ - z 7 cos E 

(B-40) 
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Inserting numerical values from Section I1 gives 

However, for the purpose of integrating Eq. (B-15), a 
slight variation of this equation is required. Since 

where t = ET, Eq. (B-42) may be expressed as 

Inserting numerical values gives 

($)AT = -(1.658 X s) (cos E) l? (B-46) 

When Eq. (B-15) is multiplied by dET = dt, this term 
is exactly integrable. 

Since e is constant to approximately four figures from 
1950 to 2000, the coefficient of Eq. (B-46) is given to that 
many figures. A variation of one digit in the fourth figure 
changes the magnitude of the term by 2 X lex3, which 
is less than the retention criterion of 6.7 X for an 
annual term (Section 111). The approximation of the fac- 
tor (pn + pE + p,) by px above is valid since these two 
quantities differ in the seventh significant figure. 

Repeating Eq. (B-17), 

This term may be derived assuming that the earth moves 
in a circular orbit with radius a in the ecliptic plane. The 
distance from the sun to the tracking station where the 
A1 clock is located is denoted as TSTN.  Then, 

(B-48) 

where 

The two vectors, with rectangular components referred 
to the mean earth equator and equinox of date, are 
given by 

e =  sinLcose ] a (B-51) 

Substituting Eqs. (B-49), (B-50), and (B-51) into Eq. (B-48) 
gives 

[ sin L sin E 

Ed8 0 
DP c2a2 c2a2 

[cos (e, + A) cos L + sin (0, + A) sinL cos E] - -sin €sin L PXU - -- - (B-52) 

The last term has a maximum magnitude of about 2 X PO-13, which is less than the retention criterion of 6.7 X le1' for an 
annual term. Ignoring this term and using trigonometric identities gives 

(B-53) 
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Both terms have a period of about 1 day. The maximum 
magnitude of the second term is about 1.8 X 10-14, which 
is the retention criterion for a daily term. Since several 
terms with only a slightly smaller magnitude are neg- 
lected, this term is ignored also. 

In order to evaluate the surviving term of Eq. (B-53), 
the definition of universal time UT (which means specs- 
cally UT1) must be considered. From Eq. (92) or Ref. 25, 
pp. 73-74, 

UT=Ox-Ru+ 12h (B-54) 

where all quantities are expressed in hours and R U  is the 
right ascension, measured from the mean equinox of date, 
of a fictitious point on the equator. The adopted expres- 
sion for Ru is (Ref. 25, p. 73) 

Ro = 18”3Sm45?836 + 8,640,1848542 Tu + 080929 T& 
(B-55) 

where 

TU = number of Julian centuries of 36,525 days of UT 
elapsed since January 0,1900, lZh UT. 

Changing units in Eq. (B-55) gives 

Ru = 279’41‘27Y54 + 129,602,768!‘13 Tu + 1!’3935 TZ 
(B-56) 

This expression for RU is almost identical to the follow- 
ing expression for the geometric mean longitude of the 
sun, L, referred to the mean equinox and ecliptic of date 

L = 279°41f48!’04 + 129,602,768!’13 T + 1!’089 T2 
(B-57) 

where 

T = number of Julian centuries of 36,525 ephemeris 
days elapsed since January 0,1900, 12” ET. 

The constant term of R,  is 20!’5 smaller than the corre- 
sponding term of L since RU is corrected for stellar aber- 
ration. The derivative of the quadratic term of Eq. (B-56) 
is the linear term in the precession rate in right ascension. 
That is, the point described by RU moves at a uniform 
rate with respect to a fixed equinox, whereas the mean 

sun does not. The difference in the quadratic terms of ;Ru 
and L will amount to only about 0.3 arc seconds by the 
end of the century. For a fixed epoch, the contribution to 
L - Ru due to computing the former from the ET value 
of the epoch and the Iatter from the UT value of the 
epoch is in the range of 1 to 2 arc seconds. Thus, for the 
remainder of the century, L and RU will differ by no more 
than 23 arc seconds. Because of this small difference, RU 
in Eq. (B-54) is approximated by L, giving 

or, in units of radians, 

The following argument will show that this approxi- 
mation is sufficiently accurate for all daily terms of 
dAl/dET. The largest daily term is the first term of 
Eq. (B-70) of Section C, which has a maximum value of 

-1.5 X 10-l’ COS (UT -I- A) 

Because of the approximation above, the variable UT 
is in error by a nearly constant value of 23 arc seconds or 
1.1 X 10-4rad. Assuming this error is constant, the error 
in dAl/dET is 

1.7 x 10-14 sin (UT + A) 

The magnitude of this neglected term is not greater than 
the retention criterion of 1.8 X for a daily term. 
Hence, the assumption that RU = L in Eq. (B-54) is valid. 

Substituting (0, - L) from Eq. (B-59) into the &st 
term of Eq. (B-53) gives 

(1 + COS E )  COS (UT + A) (B-60) 

Substituting numerical values gives 

(g)Dp = 0.6326 X 10-l6u cos (UT + A) (B-61) 

This term is retained since 6.3 X 
specified in Section 111. 

> 2.8 X 10-ls, as 
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epeating Eq. (B-18), 

(B-62) 1 
C2 

The two velocity vectors, with rectangular components 
referred to the mean earth equator and equinox of date, 

= - (;ZTN e g) 

are given by 

Substituting Eqs. (B-63) and (B-64) into Eq. (€3-62) gives 

e .  

[sin (e, + A) sin (1 - y) + cos (0, + A) cos ( I  - y )  COS "E] 
SSTGTN SS 

Using trigonometric identities gives 

. s  

[(i + COS E) COS (e, + x - t + y )  - (1 - COS E) COS (e, + x + t - y ) ]  
- ~ S T N  SS -- 

DA 2c2 
(B-66) 

Substituting I - y from Eq. (B-38), eliminating Or in favor of UT by using Eq. (B-59), using Eq. (B-27) for b and 
evaluating &TN from 

ssTN = u e, 

gives 

3 
4 

3 
4 + ecosM + -e2cos2M UT + X - esinM- -e2sin2M 

- i, i, - -- 
2c2 

i, zi, + ~ ( 1 -  cose)u( l+ ecos M)cos (UT + A + 2L + esinM) 

where terms to order e2 are retained in the term proportional to (1 + cos 6)  and terms to order e only are retained in the 
smaller term, which is proportional to (1 - cos E). Expanding and retaining terms to these orders of e gives 

(l+cos"E)u[( 1- f e2 ) cos(UT+X)+ecos(UT+h-M) 
i, e", 
2c2 

1 9 1 
8 +-ee2cos(WT+~-2M) - - g e 2 c o s ( U T + ~ + 2 M )  

i, 9, + - (1 - COS E) u [COS .(UT + h + 2L) + e COS (UT + X + 2L + M) ]  (B-69) 2c2 
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Substituting numerical values gives the mean ascending node of the lunar orbit on the ecliptic 
and the ecliptic of date, are given by 

= -2.316550 X u COS (U 

-3.8738 X 10-la u COS (UT + X - M) 

-7.287 x 18-1824 cos (UT + h - 2M) 

+8.096 X 

+0.997334 X 

u cos (UT + X + 2M) 

u cos (UT + X + 2L) 

-sin(< - n)  

cos(( - Sa)sini 

i:[ cos((- Sa)cmi]iM (B-72) 

-sin(E - Sa) 

e =  cos(L- n )  [ 0 

+ 1.6675 X 10-l' u cos (UT + X + 2L + M) 
Substituting Eqs. (B-72) and (B-73) irrto Eq. (B-71) gives 

(B-70) 
O .  

[sin(a - n ) ~ i n ( i -  sa) %f sc 

(%)MA = - c2(1 + ,p) 
From Section 111, any diurnal term of dAl/dET with 

+cos(< - n)cos(L - Sa)cosi] a coefficient (exclusive of the value of u) of 2.8 X or 
less may be deleted. Thus, the fourth term of Eq. (S-'70) 

terms of order eo, el, and e2 of the expansion of the first 
term of Eq. (B-68). 

will be deleted. The first three terms of Eq. (B-70) are (B-74) 

Using trigonometric identities gives 

a .  

[ (1+  cosi)cos(~ - L) If e3 terms were retained in this expansion, the maxi- SM sc 

mum value of the numerical coefficient would be about 
1.4 X 1O-q which is not significant. Similarly, the last 
two terms of Eq. (B-70) are terms of order eo and el in 
the expansion of the second term of Eq. (B-68). If e2 
terms were retained, the maximum value of the numeri- 
cal coefficient would be about 3 x 10-l9, which also is not 
significant. 

(%)MA = - 2c2 (1 + yu) 

- (1 - COS i )  COS (Q + L - 2 S a ) ]  (B-75) 

The magnitude of the second term is about 0.8 X 
which is smaller than the retention criterion of 5.4 X lex3 
for a monthly term. Ignoring this term and denoting Q - E 
by D (see Section 11) gives 

8, ic 
(1 + cos i) cos D ( - -  - 

MA 2c2 (1 + I") 

nserting numerical values gives 

The first-order monthly eccentricity terms would have 
a maximum coefficient of about 3 X lW3. Since this 
value is less than the retention criterion of 5.4 X 10-ls, 
the assumption of circular orbits is valid. 

since r i  = G/(l+ p). Equation ( -71) will be evaluated 
assuming that both orbits are circular. The two inertial 
velocity vectors, with rectangular components referred to 



Repeating Eq. (B-20), 

city 

For the purpose of deriving this small term, C-e 5-deg 
inclination of the lunar orbit to the ecliptic and the eccen- 
tricity of the orbit are ignored. It will be seen that these 
assumptions are justified. The two inertial velocity vec- 
tors, with rectangular components referred to the mean 
equinox and ecliptic of date, are 

1 --sin (e, + A) 

-COS (e, + X) sine 
COS (0, + A) COS E &-TN (B-79) 

(B-80) 

Substituting Eqs. (B-79) and (B-80) into Eq. ( 
gives 

[sin (e, + A) sin c &Ti-? i, 
(%+)D, = c2 (1 + p )  

+ C O S ( ~ , + X ) C O S ~ C O S E ]  ( 

Using trigonometric identities and Eq. ( 

The numerical coefficient of the smaller daily term (not 
including the value of u) is 0.4 X 10-ls, which is less than 
the retention criterion of 2.8 X 1W8. Ignoring this term 

and using Eq. (B-59) and D = C - E to eliminate and 
in favor of UT and D gives 

( l+cosE)ucos(UT+h-D)  

Inserting numerical values gives 

*) = - 0.9684 X 10- u cos (UT + X - D) 
dET D Y  

If the moon moved in the earth’s equatorial plane, the 
factor (1 + cos ~ ) / 2  would not be present in Eq. (B-83), 
and the numerical coefficient of Eq. (B-84) would be 
changed to 1.0100 X is less 
than the retention criterion of 2.8 X 

The change of 4.2 X 

Thus, in the derivation of (dAl/dET),, the average in- 
clination E (= 23O5) of the lunar orbit plane to the earth’s 
equatorial plane is not significant. Hence, neglecting the 
periodic variation in this inclination of &i z 5 deg with a 
period of 18.6 years is certainly justified. Also, the first- 
order eccentricity terms of Eq. (B-80) would produce 
terms similar to Eq. (B-84) but with a numerical coefficient 
of about 5 X which is less than the retention cri- 
terion of 2.8 X 

The integrable expression for dAl/dET is obtained by 
substituting Eqs. (B-46), (B-61), (B-70) (except the fourth 
term, which is not significant), (B-77), and (B-84) into 
Eq. fB-15): 

- (1.68 x 10-3 s) (cos E )  (i) dAl Afceaiurn - = 1 +  
dET feesium 

-2.310224 X u cos (UT + A) 

-3.8738 X u COS (UT + X - M) 
-7.287 X l@lS u COS (UT + X - 2 M )  
+0.994334 X 

+ 1.5575 X 10-17 u cos (UT + h + 2E + M) 
u cos (UT + h + 2L) 

-4.1172 X lo-” COS D 
-0.9684 X u cos (UT + X - D) 
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where the fourth term is the sum of Eq. (B-61) and the first term of Eq. (B-70). In order to integrate this expression, it is 
multiplied by dET, and each of the last seven terms is multiplied by the analytical expression for the constant derivative 
of the argument of the cosine function with respect to ET and divided by the corresponding numerical value. The result 
(in units of seconds) is 

) ( fcesium 

Afcesium dAl = dET 1 + - - 1.658 X (COS E) dE 

-0.317679 X 

-5.341 X 

u [cos (UT + A)] dv'lr 
u [COS (UT + A - M)] (dUT - dM) 

-1.01 x 10-13 u [COS (UT + x - 2 ~ ) 1   UT - 2 d ~ )  

t1.3640 X 1CFu [cos (UT + X + 2L)] (dUT + 2dL) 
f2.27 X 

- 1.672 X le6 [COS D] dD 
u [cos (UT + X + 2L + M)] (dUT + 2dL + dM) 

- 1.38 x 10-13 u [COS (UT + x - D)]  UT - d ~ )  (B-86) 

As indicated after Eq. (64), the master A1 clock was set up 
on January 1, 1958, oh UT2. Integrating Eq. (B-86) from 
this initial epoch (denoted by subscript 0) to the current 
epoch (denoted as A1 or ET) gives, in seconds, 

Afeesium 

fcesium 
ET - A1 = (ET - Al)o - (ET - ET,) - 

$1.658 X 10-3sinE 1 
$0.317679 X 

+5.341 X lo-'' u sin (UT + A. - M) I p 
u sin (UT + h) I tT 

+ 1.01 x 10-13 u sin (UT + A- 2 ~ )  I 

- 1.3640 X 10-I'~ sin (UT + h + 2L) I tT 
-2.27 X u sin (UT + X + 2L + M) I ,"' 
+ 1.672 X sin D I tT 
+1.38 X 10-13~~in(UT + X - 0) I f  

(B-87) 

The initial condition (ET - Al), equals ET - UT2 on 
January 1,1958, Oh UT2, since the master A1 clock was set 
equal to UT2 at this epoch. Denoting this quantity 
minus the initial values of the periodic relativity terms of 
Eq. (B-87) evaluated with u and X of the master A1 clock 
as  AT^^^^ gives Eq. (65) for ET - Al. 

1 



The light time equation is derived in Section without 
making the usual assumption that light moves along a 
straight line from the transmitter to the receiver. In Sec- 

line motion between two points at the coordinate speed oe 
given by Eq. (86). The results are the same because terms 

terms of order l/c5 and greater. 

Integrating from point 1 (rl or pl, t l )  to point 2 (rz or p2, t z )  
gives 

1 
tion 11, t h i s  same equation is obtained by assuming straight 

are retained to order l/c3 only and the bending &e& 

tz - tl = -L - [(p; - P8)" - (p? - pe)%I 

Tz + (T; - R2)" 

C 

] (C-6) (l+ c3 y)p In [ T1 + (T4 - RZ)" +- 

where the plus sign applies when T is strictly increasing 
from point 1 to point 2, and the minus sign applies when 
T is strictly decreasing from point 1 to point 2. From the 
second form of Eq. (82), and referring to Fig. 2, 

Substitution of d+ from Eq. (79) into Eq. (SO), setting 
dr/dt = 0 when T = R (the minimum value of T on the 
light path), and ignoring l/c4 terms gives (C-7) 

(1 + Y) P - (1 + Y) P 
c2 R x = TCOS+ = R + 

C2 

Substituting Eq. (C-3) into Eq. (C-7) gives T (1 + (' + ")' dr 1 cz r 
&=+-- ~(p[l+~~~:)~]'~z[l+~~+Y~pll 

(6-8) 
c2 R (1 + Y) PT 

c2 R p o = x +  
(C-1) 

Making the following change of variable: Substituting Eqs. (C-2) and (C-8) into (pz - pt)%, evalu- 
ating x in a 1/c2 term with Eq. (C-7), and ignoring l/c4 
terms gives the result that p = r +  (1 + Y) P (6-2) 

C2 

(p2 - p8)% = (TZ - x"% = +y 

gives, ignoring l/c4 terms, where the minus sign applies for negative y (decreasing T) .  

Substituting this result into Eq. (C-6) gives 

(PZ  - P 3 %  T1 + (T4 - 232)" 1 t2 - tl = - 
C 

(6-4) 

Writing the right-hand side of Eq. (6-4) as two terms and 

1 
d t = + - -  

C 

(C-10) 
replacing p and po by T and R in the l/c3 term gives 

where the minus sign applies for decreasing T.  The argu- 
1 PdP + (1t-Y)I-L dT ment of the logarithm in Eq. (C-10) may be expressed as 

(c-5) (as explained below) d t = & -  c (p" - p8)" - c3 (TZ - R"" 

(C-11) 
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e second form is obtained from the first by multiplying Eq. (C-9); hence, the lower sign in the numerator and 
denominator applies for decreasing T (negative y). Sub- 
stituting the final form of Eq. (C-11) into Eq. (C-10) gives 

and dividing by 

[ T l  - (rf - RZ)%] [Tz - (T; - R y ]  

The third form is obtained from the first two forms by 1 Y z - Y 1  +(1+Y)Ph[ T1 + Tz + (yz - Y1) 
$2 - tl = - c c3 T1 + rz - (yz - Yl) 

(6-12) adding the numerators and denominators. The fourth 
form is obtained by replacing R by 1c and ignoring the 
1/c2 terms of Eq. (C-7) since they produce l/c5 terms in 
the light time equation. The fifth form follows from 

which applies when T is strictly increasing or sfxictly 
decreasing. 

The quantity yz 
receiver (point 2). 

which is of order 
Eq. (C-12), giving 

- y1 is the y component of the straight line distance rlz between the transmitter (point 1) and the 
From Fig. 2, the maximum angle of rIz to the y axis is (1 + y) p/c2 R. Hence, 

(6-13) 

l/c4. Since l/c5 terms are ignored in the light time equation, yz - y1 may be replaced by r12 in 

(C-14) 

which applies when the sign of i does not change between tl and tz. For the case where r passes through a minimum 
between rl and rZ (see Fig. 2), the total light time is the time for light to travel from r1 to the minimum radius R plus the 
time for light to travel from R to r2. Let light reach the radius T = R at ephemeris time t R .  Then, 

t Z  - tl = ( t z  - t R )  + ( 4  - tl) 

From Eq. (C-10) with the positive sign, 

t z  - t E  = -+ y2 ( l+  y, {ln [Tz + (T; - R y ]  - lnR}  
c c3 

(C-15) 

(C-16) 

From Eq. (C-10) with the negative sign and the argument of the logarithm replaced by the second form of Eq. (C-11), 

t z - t l = - - +  ( l + y ) p  { I n R - l n [ T 1 - ( ( T : - R z ) % ] }  
C c3 

Substituting Eqs. (C-16) and (C-17) into Eq. (6-15) and replacing (yz - yl) with r12 gives 

The argument of the logarithm may be expressed as 

(6-17) 

(6-18) 

(C-19) 

This result was obtained by using the procedures used in the derivation of Eq. (C-11) and by setting yz - y1 = rIz. 
Substituting Eq. (6-19) into Eq. (C-18) gives Eq. (6-14). ence Eq. (C-14) is the era1 result which is valid regardless 
of whether T increases, decreases, or passes through a minimum between rl and rZ ation (C-14) is Eq. (88) of the text. 



The geometry for straight line motion is shown in 
Fig. C-1, where S indicates the position of the sun. Light is 
emitted at point 1 at ephemeris time t ,  moves along the 
straight line path at the coordinate speed ac given by 
Eq. (86), and arrives at point 2 at time tz. Let 

rl, r2 = heliocentric position vectors of points 1 and 
2 at ephemeris times tl and tz, respectively, 
with rectangular components referred to a 
nonrotating coordinate system 

r12 = r, - r, 

T , , T ~ , T ~ ~  = magnitudes of rl, r2, and r12, respectively 

Then, the angles p1 and p2 are computed from 

0 < pz < 71' (6-21) rz r12 

r z  Tl2 
COsp, = -.- 

For a photon passing the sun S on an infinitemy long track, 
the angle p decreases from 71' to zero, passing through 71'/2 
at the point of closest approach, where T = R,. 

The time for light to travel from point 1 to point 2 is the 
integral of the differential of coordinate distance du 
divided by the coordinate speed of light ac along the 
straight line path joining the two points: 

From Eq. (86), 

Ignoring terms of order 1/19, 

From Fig. C-1, 

Note that cos p and dr have the same sign and thus du is 
always positive. Also, from Fig. C-1, 

rsinp = R, (C-26) 

and 

-- dr f dP 
cosp - - - Sin p (e-27) 

Substituting Eq. (C-28) into Eq. (C-24) gives 
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This may be integrated directly, giving 

For light moving radially to or from the sun, PI = pz = 
x or zero, respectively, and Eq. (C-30) is indeterminate. 

or this case, the time for light to travel radially from r1 
to rZ (to or from the sun, not through the sun), denoting 
the larger and smaller values of rl and TZ as Tlarger and 
Tsmaller, 1s 

which integrates to 

(C-32) 

It will be shown that Eq. (C-32) for the radial case and 
Eq. (C-30) for all other cases are equivalent to Eq. (C-14) 
derived without the assumption of straight line motion. 
The argument of the logarithm of Eq. (C-30) may be 
written as 

1 

1 1 + cos p1 sin p2 
tan - pz 2 

sinp1 1 + cospz tan z p1 
- - 

wever, from Fig. 6-1, 

rz sin pz = rl sin p1 

Thus, 

(C-33) 

(C-34) 

(C-35) 

The argument of the logarithm may also be written as 

(C-36) 
Adding the numerators and denominators of Eqs. (C-35) 
and (C-36) gives 

Regardless of whether T increases, decreases, or passes 
through a minimum between r1 and rZ, 

TZ cos pz - T, cos p1 = T1z (6-38) 

Thus, 

and Eq. (C-30) is equivalent to Eq. (C-14). For the radid 
case, Eq. (C-32) is equivalent to Eq. (C-14) since 

Thus, if terms to order 1/c3 only are retained in the light 
time equation, it is valid to neglect the bending of light. 

In the original version of the DPODP, the light time is 
evaluated with Eq. (C-30) or Eq. (6-32), using PI and pz 
from Eqs. (C-20) and (C-21). However, it is planned to 
replace these equations with Eq. (C-14). 

As previously mentioned, the form of Eq. (6-14) has 
dridge (Ref. 23) and by Tausner been derived by 

(Ref. 24). The form of Eq. (C-18), evaluated a1 
straight line path, has been derived by Ross and 
(Ref. 64). 
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